Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456804

RESUMO

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-33803781

RESUMO

This study examines the functional model of bone development in peri-pubertal boys and girls. Specifically, we implemented a mixed-longitudinal design and hierarchical structural models to provide experimental evidence in support of the conceptual functional model of bone development, postulating that the primary mechanical stimulus of bone strength development is muscle force. To this end, we measured radial and tibial bone properties (speed of sound, SOS), isometric grip and knee extensors strength, bone resorption (urinary NTX concentration), body mass index (BMI), somatic maturity (years from peak height velocity) and skeletal maturity (bone age) in 180 children aged 8-16 years. Measurements were repeated 2-4 times over a period of 3 years. The multilevel structural equation modeling of 406 participant-session observations revealed similar results for radial and tibial SOS. Muscle strength (i.e., grip strength for the radial and knee extension for tibial model) and NTX have a significant direct effect on bone SOS (ß = 0.29 and -0.18, respectively). Somatic maturity had a direct impact on muscle strength (ß = 0.24) and both a direct and indirect effect on bone SOS (total effect, ß = 0.30). Physical activity and BMI also had a significant direct impact on bone properties, (ß = 0.06 and -0.18, respectively), and an additional significant indirect effect through muscle strength (ß = 0.01 and 0.05, respectively) with small differences per bone site and sex. Muscle strength fully mediated the impact of bone age (ß = 0.14) while there was no significant effect of energy intake on either muscle strength or bone SOS. In conclusion, our results support the functional model of bone development in that muscle strength and bone metabolism directly affect bone development while the contribution of maturity, physical activity, and other modulators such as BMI, on bone development is additionally modulated through their effect on muscle strength.


Assuntos
Osso e Ossos , Força Muscular , Adolescente , Densidade Óssea , Desenvolvimento Ósseo , Criança , Feminino , Humanos , Masculino , Rádio (Anatomia)/diagnóstico por imagem , Tíbia , Ultrassonografia
3.
J Vis Exp ; (136)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-30010654

RESUMO

Zebrafish (Danio rerio) possess orthologues for 84% of the genes known to be associated with human diseases. In addition, these animals have a short generation time, are easy to handle, display a high reproductive rate, low cost, and are easily amenable to genetic manipulations by microinjection of DNA in embryos. Recent advances in gene editing tools are enabling precise introduction of mutations and transgenes in zebrafish. Disease modeling in zebrafish often leads to larval phenotypes and early death which can be challenging to interpret if genotypes are unknown. This early identification of genotypes is also needed in experiments requiring sample pooling, such as in gene expression or mass spectrometry studies. However, extensive genotypic screening is limited by traditional methods, which in most labs are performed only on adult zebrafish or in postmortem larvae. We addressed this problem by adapting a method for the isolation of PCR-ready genomic DNA from live zebrafish larvae that can be achieved as early as 72 h post-fertilization (hpf). This time and cost-effective technique, improved from a previously published genotyping protocol, allows the identification of genotypes from microscopic fin biopsies. The fins quickly regenerate as the larvae develop. Researchers are then able to select and raise the desired genotypes to adulthood by utilizing this high-throughput PCR-based genotyping procedure.


Assuntos
Nadadeiras de Animais/crescimento & desenvolvimento , DNA/isolamento & purificação , Larva/genética , Animais , Genótipo , Peixe-Zebra
4.
Clin Transl Sci ; 11(5): 506-512, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29877606

RESUMO

Duchenne muscular dystrophy is a recessive X-linked disease characterized by progressive muscle wasting; cardiac or respiratory failure causes death in most patients by the third decade.  The disease is caused by mutations in the dystrophin gene that lead to a loss of functional dystrophin protein. Although there are currently few treatments for Duchenne muscular dystrophy, previous reports have shown that upregulating the dystrophin paralog utrophin in Duchenne muscular dystrophy mouse models is a promising therapeutic strategy. We conducted in silico mining of the Connectivity Map database for utrophin-inducing agents, identifying the p38-activating antibiotic anisomycin. Treatments of C2C12, undifferentiated murine myoblasts, and mdx primary myoblasts with anisomycin conferred increases in utrophin protein levels through p38 pathway activation.  Anisomycin also induced utrophin protein levels in the diaphragm of mdx mice.  Our study shows that repositioning small molecules such as anisomycin may prove to have Duchenne muscular dystrophy clinical utility.


Assuntos
Anisomicina/farmacologia , Sistema de Sinalização das MAP Quinases , Regulação para Cima/efeitos dos fármacos , Utrofina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
5.
Genetics ; 207(4): 1501-1518, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29061647

RESUMO

Pyridoxine-dependent epilepsy (PDE) is a rare disease characterized by mutations in the lysine degradation gene ALDH7A1 leading to recurrent neonatal seizures, which are uniquely alleviated by high doses of pyridoxine or pyridoxal 5'-phosphate (vitamin B6 vitamers). Despite treatment, neurodevelopmental disabilities are still observed in most PDE patients underlining the need for adjunct therapies. Over 60 years after the initial description of PDE, we report the first animal model for this disease: an aldh7a1-null zebrafish (Danio rerio) displaying deficient lysine metabolism and spontaneous and recurrent seizures in the larval stage (10 days postfertilization). Epileptiform electrographic activity was observed uniquely in mutants as a series of population bursts in tectal recordings. Remarkably, as is the case in human PDE, the seizures show an almost immediate sensitivity to pyridoxine and pyridoxal 5'-phosphate, with a resulting extension of the life span. Lysine supplementation aggravates the phenotype, inducing earlier seizure onset and death. By using mass spectrometry techniques, we further explored the metabolic effect of aldh7a1 knockout. Impaired lysine degradation with accumulation of PDE biomarkers, B6 deficiency, and low γ-aminobutyric acid levels were observed in the aldh7a1-/- larvae, which may play a significant role in the seizure phenotype and PDE pathogenesis. This novel model provides valuable insights into PDE pathophysiology; further research may offer new opportunities for drug discovery to control seizure activity and improve neurodevelopmental outcomes for PDE.


Assuntos
Aldeído Desidrogenase/genética , Epilepsia/genética , Lisina/metabolismo , Convulsões/genética , Aldeído Desidrogenase/deficiência , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Técnicas de Inativação de Genes , Humanos , Lisina/deficiência , Mutação , Piridoxina/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Vitamina B 6/genética , Vitamina B 6/metabolismo , Peixe-Zebra/genética , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
6.
Orphanet J Rare Dis ; 9: 4, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405637

RESUMO

BACKGROUND: Spinal Muscular Atrophy (SMA) is one of the most common inherited causes of infant death and is caused by the loss of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene. One of the treatment strategies for SMA is to induce the expression of the protein from the homologous SMN2 gene, a rescuing paralog for SMA. METHODS AND RESULTS: Here we demonstrate the promise of pharmacological modulation of SMN2 gene by BAY 55-9837, an agonist of the vasoactive intestinal peptide receptor 2 (VPAC2), a member of G protein coupled receptor family. Treatment with BAY 55-9837 lead to induction of SMN protein levels via activation of MAPK14 or p38 pathway in vitro. Importantly, BAY 55-9837 also ameliorated disease phenotype in severe SMA mouse models. CONCLUSION: Our findings suggest the VPAC2 pathway is a potential SMA therapeutic target.


Assuntos
Atrofia Muscular Espinal/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Receptores Tipo II de Peptídeo Intestinal Vasoativo/agonistas , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Peptídeo Intestinal Vasoativo/uso terapêutico
7.
J Neuromuscul Dis ; 1(1): 65-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27858661

RESUMO

BACKGROUND: Autosomal recessive spinal muscle atrophy (SMA) is characterized by the loss of α motor neurons resulting in progressive muscle loss and respiratory failure. SMA is one of the most common inherited causes of infant death with a carrier frequency of 1 in 50 and a calculated prevalence of about 1 in 11,000 live births in the US. The low amount of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene causes SMA. OBJECTIVE: A potential treatment strategy for SMA is to upregulate levels of SMN protein originating from the paralog SMN2 gene compensating in part for the absence of the SMN1 gene. Our group has previously shown that activation of the STAT5 pathway by lactation hormone prolactin (PRL) increased SMN levels, improved motor function and enhanced survival in a severe SMA mouse model. Given that human growth hormone (HGH) is also known to activate the STAT5 signalling pathway and is already used extensively in clinical settings, we thus elected to assess its impact on SMN levels. METHODS AND RESULTS: Administration of HGH in NT2 cells activated STAT5 pathway which resulted into significant induction in SMN protein levels. Furthermore, systemic administration of HGH to transgenic SMA mice induced SMN protein levels in the brain and spinal cord samples. Critically, HGH treatment improved disease phenotype and increased survival in two severe SMA mouse models. CONCLUSIONS: Our results confirm earlier work suggesting STAT5 pathway activators as potential therapeutic compounds for the treatment of SMA and identify HGH as one such promising agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA