Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Int J Biol Macromol ; 273(Pt 1): 132780, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825291

RESUMO

Manufacturing a highly effective sorbent for removing UO22+ ions from aqueous effluents is vital for safeguarding the environment and recovering valuable resources. This research presents an innovative strategy employing adsorbents derived from pullulan, specifically tailored with furfuryl-amidoxime (FAO), to improve their affinity for UO22+ ions. The formation of a UO22+ ion-imprinted sorbent (U-II-P) was achieved by crosslinking the UO22+/FAO-modified pullulan (FAO-P) complex with bis(maleimido)ethane (BME) via click Diels-Alder (DA) cyclization, enhancing its attraction and specificity for UO22+ ions. Detailed characterization of the synthesis was performed using NMR and FTIR spectroscopy, and the sorbent's external textures were analyzed using scanning electron microscopy (SEM). The U-II-P sorbent showcased outstanding preference for UO22+ over other metallic ions, with the most efficient adsorption occurring at pH 5. It exhibited a significant adsorption capacity of 262 mg/g, closely aligning with the predictions of the Langmuir adsorption model and obeying pseudo-second-order kinetic behavior. This investigation underlines the effectiveness of FAO-P as a specialized solution for UO22+ ion extraction from wastewater, positioning it as a viable option for the remediation of heavy metals.

2.
Int J Biol Macromol ; : 133384, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917927

RESUMO

This study introduces a novel approach for the separation of indacrinone (IC) enantiomers, crucial in treating edema, hypertension, and hyperuricemia. A cationic biopolymer from furan-2-ylmethylhydrazine-cellulose (FUH-CE), derived from cyanoethyl cellulose (CEC), serving as a substrate in molecular imprinting. A key innovation is the use of the Diels-Alder reaction for efficient cross-linking with bis(maleimido)ethane (BME). This chemical strategy resulted in molecularly imprinted microparticles with high selectivity for the S-IC enantiomer, which can be eluted by adjusting the solution's pH. Extensive characterization confirmed the chemical modifications and selective binding efficacy of these biopolymers. Utilizing separation columns, our method achieved an impressive chiral resolution of (±)-IC, with an enantiomeric excess (ee) of 95 % for R-IC during the loading phase and 97 % for S-IC during elution. Under optimized conditions, the biopolymer demonstrated a maximum binding capacity of 131 mg/g at pH 6. This advanced approach represents a significant advancement in chiral separation technology, offering a robust and efficient technique for the selective isolation of enantiomers. This method not only enhances potential targeted therapeutic applications but also provides a scalable solution for industrial chiral separations.

3.
Int J Biol Macromol ; 270(Pt 1): 132193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723816

RESUMO

Developing a sorbent for the removal of La3+ ions from wastewater offers significant environmental and economic advantages. This study employed an ion-imprinting process to integrate La3+ ions into a newly developed derivative of aminoguanidine-chitosan (AGCS), synthesized via an innovative method. The process initiated with the modification of chitosan by attaching cyanoacetyl groups through amide bonds, yielding cyanoacetyl chitosan (CAC). This derivative underwent further modification with aminoguanidine to produce the chelating AGCS biopolymer. The binding of La3+ ions to AGCS occurred through imprinting and cross-linking with epichlorohydrin (ECH), followed by the extraction of La3+, resulting in the La3+ ion-imprinted sorbent (La-AGCS). Structural confirmation of these chitosan derivatives was established through elemental analysis, FTIR, and NMR. SEM analysis revealed that La-AGCS exhibited a more porous structure compared to the smoother non-imprinted polymer (NIP). La-AGCS demonstrated superior La3+ capture capability, with a maximum capacity of 286 ± 1 mg/g. The adsorption process, fitting the Langmuir and pseudo-second-order models, indicated a primary chemisorption mechanism. Moreover, La-AGCS displayed excellent selectivity for La3+, exhibiting selectivity coefficients ranging from 4 to 13 against other metals. This study underscores a strategic approach in designing advanced materials tailored for La3+ removal, capitalizing on specific chelator properties and ion-imprinting technology.


Assuntos
Quitosana , Guanidinas , Lantânio , Impressão Molecular , Águas Residuárias , Poluentes Químicos da Água , Quitosana/química , Lantânio/química , Águas Residuárias/química , Adsorção , Guanidinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Impressão Molecular/métodos , Purificação da Água/métodos , Íons , Cinética
4.
J Chromatogr A ; 1727: 464925, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38776603

RESUMO

The current work describes the efficient creation and employment of a new S-citalopram selective polymeric sorbent, made from poly(divinylbenzene-maleic anhydride-styrene). The process began by using suspension polymerization technique in the synthesis of poly(styrene-maleic anhydride-divinylbenzene) microparticles. These were then modified with ethylenediamine, developing an amido-succinic acid-based polymer derivative. The S-citalopram, a cationic molecule, was loaded onto these developed anionic polymer particles. Subsequently, the particles were post-crosslinked using glyoxal, which reacts with the amino group residues of ethylenediamine. S-citalopram was extracted from this matrix using an acidic solution, which also left behind stereo-selective cavities in the S-citalopram imprinted polymer, allowing for the selective re-adsorption of S-citalopram. The attributes of the polymer were examined through methods such as 13C NMR, FTIR, thermogravemetric and elemental analyses. SEM was used to observe the shapes and structures of the particles. The imprinted polymers demonstrated a significant ability to adsorb S-citalopram, achieving a capacity of 878 mmol/g at a preferred pH level of 8. It proved efficient in separating enantiomers of (±)-citalopram via column methods, achieving an enantiomeric purity of 97 % for R-citalopram upon introduction and 92 % for S-citalopram upon release.


Assuntos
Citalopram , Impressão Molecular , Citalopram/química , Citalopram/isolamento & purificação , Citalopram/síntese química , Estereoisomerismo , Adsorção , Polímeros/química , Polímeros/síntese química , Cromatografia Líquida de Alta Pressão/métodos
5.
Int J Biol Macromol ; 263(Pt 1): 130255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368988

RESUMO

Developing an efficient adsorbent for Ru3+ ions in wastewater is crucial for both environmental protection and resource recovery. This study introduces a novel approach using cellulose-based adsorbents, specifically modified with furan-thiosemicarbazide (FTC), to enhance their selectivity for Ru3+ ions. By cross-linking the Ru3+/FTC-modified cellulose (FTC-CE) complex with a bis(maleimido)ethane (BME) cross-linker, we created a Ru3+ ion-imprinted sorbent (Ru-II-CE) that exhibits a strong affinity and selectivity for Ru3+ ions. The synthesis process was thoroughly characterized using NMR and FTIR spectroscopy, while the surface morphology of the sorbent particles was examined with scanning electron microscopy. The Ru-II-CE sorbent demonstrated exceptional selectivity for Ru3+ among competing metal cations, achieving optimal adsorption at a pH of 5. Its adsorption capacity was notably high at 215 mg/g, fitting well with the Langmuir isotherm model, and it followed pseudo-second-order kinetics. This study highlights the potential of FTC-CE for targeted Ru3+ removal from wastewater, offering a promising solution for heavy metal decontamination.


Assuntos
Rutênio , Semicarbazidas , Poluentes Químicos da Água , Águas Residuárias , Celulose/química , Íons , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química , Cinética
6.
Int J Biol Macromol ; 259(Pt 2): 129145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176491

RESUMO

Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity for specific metals remains very low. Here, we describe the synthesis of 4-(2-pyridyl)thiosemicarbazide (PTC) hydrazidine-functionalized cellulose (Pb-PTC-CE), a polymer imprinted with Pb2+ ions that may be used to remove Pb2+ ions from wastewater. Owing to its potent -NH2 functionalization, PTC hydrazidine not only served as an efficient chelator to effectively supply coordinating sites and construct hierarchical porous structures on Pb-PTC-CE, but it also made it possible for cross-linking to occur through the glyoxal cross-linker. The abundant chelators, along with the hierarchical porous construction of the developed Pb-PTC-CE with PTC functionality, result in a greater sorption capacity of 336 mg/g and a short sorption period of 40 min for Pb2+. Additionally, Pb-PTC-CE exhibits highly selective Pb2+ uptake compared to competing ions. This study proposes a feasible methodology for the development of high-quality materials for Pb2+ remediation by combining the advantages of active ligand functionality with ion-imprinting techniques in a straightforward way.


Assuntos
Celulose , Poluentes Químicos da Água , Águas Residuárias , Chumbo , Íons , Água , Cátions , Quelantes , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética
7.
Rev Neurol (Paris) ; 180(1-2): 42-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38176987

RESUMO

The autonomic nervous system (ANS) harmoniously regulates all internal organic functions (heart rate, blood pressure, vasomotion, digestive tract motility, endocrinal secretions) and adapts them to the needs. It's the control of so-called vegetative functions, which allows homeostasis but also allostasis of our body. ANS is divided into two systems often understood as antagonistic and complementary: the sympathetic and the parasympathetic systems. However, we currently know of many situations of co-activation of the two systems. Long seen as acting through "reflex" control loops passing through the integration of peripheral information and the efferent response to the peripheral organ, more recent electrophysiological and brain functional imaging knowledge has been able to identify the essential role of the central autonomic network. This element complicates the understanding of the responses of the reflex loops classically used to identify and quantify dysautonomia. Finding the "ANS" tools best suited for the clinician in their daily practice is a challenge that we will attempt to address in this work.


Assuntos
Doenças do Sistema Nervoso Autônomo , Sistema Nervoso Autônomo , Humanos , Sistema Nervoso Autônomo/anatomia & histologia , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia
8.
Int J Biol Macromol ; 256(Pt 1): 128186, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37979761

RESUMO

It is of tremendous economic and environmental significance to obtain a powerful adsorbent for the extraction of Gd3+ from wastewater. Adsorbents derived from cellulosic materials functionalized with specific chelators show great promise for the removal of heavy metal ions from wastewater. The selectivity of these sorbents for metal ions is, however, still rather poor. Here, we present a technique for trapping Gd3+ ions from wastewater by synthesizing Gd3+ ion-imprinted polymers based on isatinhydrazone-functionalized cellulose (Gd-ISH-CE). Not only did isatinhydrazone work as a tridentate ligand to directly provide ligand vacancies and build hierarchy pores on Gd-ISH-CE, but it also enabled cross-linking through the epichlorohydrine cross-linker thanks to its very effective NH2 functionalization. The as-prepared Gd-ISH-CE with ISH functionality shows a high adsorption capacity of 275 mg/g and a rapid equilibration time of 30 min for Gd3+ due to its plentiful binding sites and hierarchical pore structure. Furthermore, Gd-ISH-CE shows very selective capture of Gd3+ over competing ions. By integrating the benefits of ion-imprinting and chelator functionalization methodologies in an effortless manner, this study presents a practical approach to the development of superior materials for Gd3+ recovery.


Assuntos
Isatina , Poluentes Químicos da Água , Celulose/química , Águas Residuárias , Gadolínio , Ligantes , Íons/química , Adsorção , Poluentes Químicos da Água/química
9.
Carbohydr Polym ; 326: 121620, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142099

RESUMO

Chitosan was used in this study as the bio-based product for the development of microparticles for the specifically targeted removal of cerium ions (Ce3+) by ion-imprinting technology. A thiosalicylic hydrazide-modified chitosan (TSCS) is produced via cyanoacetylation of chitosan, followed by hydrazidine derivatization to finally introduce the thiosalicylate chelating units. Ion-imprinted Ce-TSCS sorbent microparticles were prepared by combining the synthesized TSCS with Ce3+, crosslinking the polymeric Ce3+/TSCS complex with glutaraldehyde, and releasing the chelated Ce3+ using an eluent solution containing a mixture of EDTA and HNO3. Ce-TSCS had a capacity of 164 ± 1 mg/g and better removal selectivity for Ce3+ because it was smart enough to figure out which target ions would fit into the holes made by Ce3+ during the imprinting process. The kinetic data were well suited to a pseudo-second-order model, and the isotherms were well described by the Langmuir model, both of which pointed to chemisorption and adsorption through Ce3+ chelation. XPS and FTIR analyses demonstrate that the predominant adsorption mechanism is the coordination of Ce3+ with the -NH-, -NH2, and -SH chelating units of the thiosalicylic hydrazidine. These findings provide fresh direction for the development of sorbent materials that can effectively and selectively remove Ce3+ from aqueous effluents.

10.
Int J Biol Macromol ; 258(Pt 2): 128828, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141700

RESUMO

In this study, gellan gum (Gel) derivatives were allowed to interact via aqueous Diels-Alder chemistry without the need for initiators, producing a crosslinked hydrogel network that exhibited good potential as a drug carrier using tramadol as a drug model. Hydrogel conjugation was achieved by the synthesis of a maleimide and furan-functionalized Gel, and the pre- and post-gelation chemical structure of the resulting hydrogel precursors was fully investigated. Potential uses of the developed hydrogel in the pharmaceutical industry were also evaluated by looking at its gelation duration, temperature, morphologies, swelling, biodegradation, and mechanical characteristics. The Gel-FM hydrogels were safe, showed good antimicrobial activity, and had a low storage modulus, which meant that they could be used in many biochemical fields. The encapsulation and release of tramadol from the hydrogel system in phosphate-buffered saline (PBS) at 37 °C were investigated under acidic and slightly alkaline conditions, replicating the stomach and intestinal tracts, respectively. The in-vitro release profile showed promising results for drug encapsulation, revealing that the drug could safely be well-encapsulated in acidic stomach environments and released more quickly in slightly alkaline intestinal environments. This implies that the hydrogels produced could work well as polymers for specifically delivering medication to the colon.


Assuntos
Hidrogéis , Tramadol , Hidrogéis/química , Polissacarídeos Bacterianos/química , Sistemas de Liberação de Medicamentos
11.
Int J Biol Macromol ; 253(Pt 4): 126928, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37717875

RESUMO

Flurbiprofen (FP) is one of the non-steroidal anti-inflammatory drugs (NSAIDs) commonly used to treat arthritic conditions. FP has two enantiomers: S-FP and R-FP. S-FP has potent anti-inflammatory effects, while R-FP has nearly no such effects. Herein, molecularly imprinted microparticles produced from hydrazidine-cellulose (CHD) biopolymer for the preferential uptake of S-FP and chiral resolution of (±)-FP were developed. First, cyanoethylcellulose (CECN) was synthesized, and the -CN units were transformed into hydrazidine groups. The developed CHD was subsequently shaped into microparticles and ionically interacted with the S-FP enantiomer. The particles were then imprinted after being cross-linked with glutaraldehyde, and then the S-FP was removed to provide the S-FP enantio-selective sorbent (S-FPCHD). After characterization, the optimal removal settings for the S- and R-FP enantiomers were determined. The results indicated a capacity of 125 mg/g under the optimum pH range of 5-7. Also, S-FPCHD displayed a noticeable affinity toward S-FP with a 12-fold increase compared to the R-FP enantiomer. The chiral resolution of the (±)-FP was successfully attempted using separation columns, and the outlet sample of the loading solution displayed an enantiomeric excess (ee) of 93 % related to the R-FP, while the eluent solution displayed an ee value of 95 % related to the S-FP.


Assuntos
Flurbiprofeno , Flurbiprofeno/química , Anti-Inflamatórios não Esteroides , Celulose , Estereoisomerismo
12.
Carbohydr Polym ; 313: 120873, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182933

RESUMO

Herein, cellulose was selected as the raw material for the production of sorbent microspheres for the selective separation of uranyl (UO22+) ions by ion-imprinting technique due to their low cost, biodegradability, and renewability. To begin, an amidoxime cellulosic derivative (AOCE) is synthesized by a Michael addition followed by an amidoximation reaction, both of which are homogeneous reactions. In the end, microspheres of ion-imprinted U-AOCE sorbent were made by mixing the developed AOCE derivative with UO22+, crosslinking the UO22+ polymer complex with glyoxal, and eluting the coordinated ions with H+/EDTA. U-AOCE smartly recognized the target ions for fitting the cavities generated during the UO22+-imprinting process, resulting in a much greater adsorption capacity of 382 ± 1 mg/g and enhanced adsorption selectivity for UO22+. A pseudo-second-order model fit the data well in terms of kinetics, while the Langmuir model adequately explained the isotherms, indicating chemisorption and adsorption via UO22+ chelation. The coordination between UO22+ and both the -NH2 and -OH groups of the amidoxime units is the primary adsorption process, as shown by NMR, XPS, and FTIR studies. For UO22+ biosorption from aqueous effluents, the results of this study deliver new guidance for the design of biosorbents with high removal capability and excellent selectivity.

13.
Int J Biol Macromol ; 237: 124073, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934819

RESUMO

The recovery of uranium from aqueous effluents is very important for both the environment and the future of nuclear power. However, issues of sluggish rates and poor selectivity persist in achieving high-efficiency uranium extraction. In this study, uranyl (UO22+) ions were imprinted on an amino-phenolic chitosan derivative using an ion-imprinting method. First, 3-hydroxy-4-nitrobenzoic acid (HNB) units were joined to chitosan via amide bonding, followed by reducing the -NO2 residues into -NH2. The amino-phenolic chitosan polymer ligand (APCS) was coordinated with UO22+ ions, then cross-linked with epichlorohydrin (ECH), and finally the UO22+ ions were taken away. When compared to non-imprinted sorbent, the resulting UO22+ imprinted sorbent material (U-APCS) recognized the target ions preferentially, allowing for much higher adsorption capacities (qm = 309 ± 1 mg/g) and improved adsorption selectivity for UO22+. The FTIR and XPS analyses supported the pseudo-second-order model's suggestion that chemisorption or coordination is the primary adsorption mechanism by fitting the data well in terms of kinetics. Also, the Langmuir model adequately explained the isotherms, suggesting UO22+ adsorption in the form of monolayers. The pHZPC value was estimated at around 5.7; thus, the optimum uptake pH was achieved between pHs 5 and 6. The thermodynamic properties support the endothermic and spontaneous nature of UO22+ adsorption.


Assuntos
Quitosana , Urânio , Quitosana/química , Urânio/química , Concentração de Íons de Hidrogênio , Termodinâmica , Cinética , Íons , Adsorção , Fenóis
14.
Int J Biol Macromol ; 210: 208-217, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489625

RESUMO

The polysaccharide pectin (PC) was functionalized with the photo-responsive cinnamic acid hydrazide (CN) to produce the photo-crosslinkable PC-CN hydrogel material that was then evaluated as a carrier for encapsulation of the drug model aspirin. Cinnamic acid hydrazide was first prepared and then incorporated with the abundant -COOCH3 groups on the pectin chain via hydrazide linkage. The obtained polymeric derivatives have been characterized by means of instrumental techniques including FTIR and NMR. The obtained PC-CN hydrogels with different cinnamic functionality were also freeze-dried and examined by SEM, which indicated more coherent hydrogel texture by increasing the cinnamic functionalization. The effect of the photo-curing time, as well as the functionalization degree, on the swelling and gelation of the obtained hydrogel was also studied to evaluate the potential of the developed material in drug delivery systems using aspirin as a common and available drug model. The developed PC-CN hydrogel materials exhibited high potential as a drug carrier that enables the control of the drug release via optimizing both the degree of cinnamic functionality and the photo-curing time.


Assuntos
Hidrogéis , Pectinas , Aspirina , Cinamatos , Hidrazinas , Hidrogéis/química
15.
Carbohydr Polym ; 284: 119139, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287888

RESUMO

The main aim of this work is the preparation of azo dye modified chitosan that was subsequently used in the ion-imprinting of Cr(III) ions to finally obtain ion-selective sorbent able to selectively combine with Cr(III) ions from water when coexisting with other similar metal ions. The azo dye derived from resorcinol and p-aminobenzoic acid was prepared and then linked to the chitosan amino groups by amide linkages utilizing EDC/NHS coupling agent. A polymeric complex of the azo dye chitosan derivative AZCS and Cr(III) ions was then prepared and treated with glyoxal solution, which cross-link the main chitosan chains in form of micro-spherical beads in presence of the coordinated Cr(III) ions that were later expelled out of the texture of the beads using acidified EDTA eluent solution while preserving the spatial and geometrical shape of the resulting Cr(III) ions chelating sites.

16.
Carbohydr Polym ; 260: 117771, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712129

RESUMO

A photo-crosslinkable hydrogel derived from cinnamoyl modified alginate (Alg-CN) was prepared via hydrazide intermediate and employed as an efficient drug carrier using the painkiller drug paracetamol. Methyl ester of the alginic acid was first prepared and converted into the corresponding hydrazide intermediate (Alg-Hyd) and then the cinnamoyl units were incorporated using cinnamoyl chloride. The synthesized derivatives were characterized by spectral and instrumental methods to confirm their suggested chemical structures. The obtained Alg-CN derivatives displayed initiator-free crosslinking capabilities upon the UV exposure for adequate periods of time, which was demonstrated due to the formation of cyclobutane bridges connecting the alginate polysaccharide chains through the [2π+2π] cycloaddition reaction carried out by the CHCH units of the inserted cinnamoyl moieties. The cross-linking of the Alg-CN was monitored by observing the lowering of the UV spectral band related to the cinnamoyl units and then the gelation efficiency along with the swelling degree was investigated over the UV light exposure time. Moreover, the developed hydrogel derivatives present considerable potentials as drug carriers that enable the control of the drug release by varying the degree of hydrogel cross-linking either by cinnamoyl functionalization or UV light exposure time.

17.
Carbohydr Polym ; 256: 117509, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483030

RESUMO

Ion-imprinting strategy was utilized in the development of UO2(II) imprinted amidoxime modified chitosan sorbent (U-AOCS) that can selectively remove UO2(II) from water. First, cyanoactic acid was linked to the chitosan -NH2 groups and then the inserted -CN groups were converted into amidoxime moieties, which chelate the UO2(II) ions and then the polymer chains were cross-linked by glyoxal. The UO2(II) ions have been then eluted leaving their matching recognition sites. The prepared U-AOCS along with the control NIP displayed maximum capacities toward the UO2(II) ions around 332 and 186 mg/g, respectively, and the isotherms were interpreted better by the Langmuir model in both adsorbents. Moreover, the selective uptake of the uranyl ions in multi-ionic aqueous solutions containing the tetravalent Th(IV) ions, trivalent Al(III), Eu(III), and Fe(III) ions, beside the divalent Pb(II), Co(II), Ni(II), Cu(II) ions confirmed the successful creation of a considerable UO2(II) ions selectivity in the U-AOCS construction. In addition, the U-AOCS adsorbent displayed economic feasibility by maintaining around 95 % of its initial efficiency after the regeneration and reuse for 5 adsorption/desorption cycles.


Assuntos
Quitosana/química , Polímeros Molecularmente Impressos/química , Oximas/química , Compostos de Urânio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Acetatos/química , Adsorção , Reagentes de Ligações Cruzadas/química , Glioxal/química , Humanos , Íons , Sensibilidade e Especificidade , Termodinâmica
18.
Int J Biol Macromol ; 161: 539-549, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544585

RESUMO

A photo-active gellan gum (Gel) derivative was developed by amide bond combination with trans-4-[p-(amino)styryl]pyridine (SP). The SP-Gel was cross-linked by UV curing via the intermolecular 2π + 2π cycloaddition of the inserted SP-CH=CH- moieties. The chemical structure of the obtained photo-crosslinkable biopolymer was investigated before and after the UV curing and the progress of the performed 2π + 2π cycloaddition-based cross-linking was detected via UV-visible light spectra. SP-Gel was evaluated as a polymeric matrix for the immobilization of catalase via entrapment technique. The synthesized biopolymer was mixed with the catalase and molded in the form of membranes that were UV cured to encapsulate the enzyme. The membranes were able to entrap 0.75 mg/cm2 with retained activity reached above 95%. The immobilized catalase displayed higher thermal stability and higher resistance toward the environmental pH disturbances compared to the free enzyme. Also, despite the observed lower catalase-H2O2 affinity upon the entrapment that was indicated from the performed kinetic studies, the reusability and storage stability experiments revealed the economic value of the entire process by preserving around 95% and 83% of the initial catalase activity after the fifth and tenth operation cycles, respectively.


Assuntos
Catalase/química , Enzimas Imobilizadas/química , Polissacarídeos Bacterianos/química , Biopolímeros/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Cinética
19.
Int J Biol Macromol ; 155: 795-804, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32229208

RESUMO

An isatin functionalized chitosan derived ion-imprinted adsorbent (Cu-CIS) was designed by tailoring Cu(II) ions imprinted cavities within the modified polysaccharide network matrix that are able to capture Cu(II) ions selectively in aqueous solution. The chelating power of chitosan toward the Cu(II) ions was first enhanced via isatin functionalization, which was cross-linked using epichlorohydrin (ECH) after loading the Cu(II) ions. The selective metal ions binding sites are then formed by eluting the coordinated Cu(II) ions using EDTA to finally produce the Cu-CIS selective sorbent. The equilibrium isotherms have been utilized to anticipate the maximum capacity of the Cu-CIS sorbent and compare it with that of the blank non-imprinted sorbent NI-CIS. In addition, the significance of inserting the Cu(II) ions recognition cavities within the adsorbent matrix was pointed out by performing the adsorption in a multi-ionic solution mixture containing Co(II), Ni(II), Pb(II), Cd(II) and Cu(II) ions and the obtained selectivity coefficients in case of Cu-CIS revealed remarkable selectivity potentials toward the Cu(II) ions compared to NI-CIS. Moreover, at the consecutive performance of a Cu-CIS absorbent for five cycles, it was found that it still held 97% of its initial capacity enabling promising applications in both water treatment and Cu (II) ions recycling.


Assuntos
Cátions Bivalentes/química , Quelantes , Quitosana/química , Cobre/química , Isatina/química , Metais Pesados/química , Poluentes Químicos da Água/química , Adsorção , Quelantes/síntese química , Quelantes/química , Cinética , Purificação da Água
20.
RSC Adv ; 10(26): 15461-15492, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35558641

RESUMO

Heterocycles incorporating a pyrimidopyrimidine scaffold have aroused great interest from researchers in the field of medical chemistry because of their privileged biological activities; they are used as anti-bacterial, antiviral, anti-tumor, anti-allergic, antihypertensive, anticancer, and hepatoprotective agents. Therefore, the present study aims to investigate the chemistry of heterocycles incorporating pyrimido[1,6-a]pyrimidine and pyrimido[1,6-c]pyrimidine skeletons and their biological characteristics. The main sections discuss (1) the synthetic routes to obtain substituted pyrimidopyrimidines, pyrimido[1,6-a]pyrimidin-diones, pyrimidoquinazolines, tricyclic, tetracyclic, and binary systems; (2) the reactivity of the substituents attached to the pyrimidopyrimidine skeleton, including thione and amide groups, nucleophilic substitutions, condensations, ring transformations, and coordination chemistry; (3) compounds of this class of heterocycles containing a significant characteristic scaffold and possessing a wide range of biological characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA