RESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a growing health concern due to its increasing prevalence worldwide. Metabolic homeostasis encompasses the stable internal conditions vital for efficient metabolism. This equilibrium extends to the intestinal microbiota, whose metabolic activities profoundly influence overall metabolic balance and organ health. The metabolites derived from the gut microbiota metabolism can be defined as microbiota-related co-metabolites. They serve as mediators between the gut microbiota and the host, influencing various physiological processes. The recent redefinition of the term MASLD has highlighted the metabolic dysfunction that characterize the disease. Metabolic dysfunction encompasses a spectrum of abnormalities, including impaired glucose regulation, dyslipidemia, mitochondrial dysfunction, inflammation, and accumulation of toxic byproducts. In addition, MASLD progression has been linked to dysregulation in the gut microbiota and associated co-metabolites. Short-chain fatty acids (SCFAs), hippurate, indole derivatives, branched-chain amino acids (BCAAs), and bile acids (BAs) are among the key co-metabolites implicated in MASLD progression. In this review, we will unravel the relationship between the microbiota-related metabolites which have been associated with MASLD and that could play an important role for developing effective therapeutic interventions for MASLD and related metabolic disorders.
RESUMO
The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.
Assuntos
Inflamação , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Células Mieloides , Transdução de Sinais , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Nutrientes/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
The purpose of the study was to determine the impact of weight loss through calorie restriction on metabolic profile, and inflammatory and oxidative stress parameters in metabolically healthy (MHO) and unhealthy (MUHO) obese individuals. A total of 74 subjects (34 MHO and 40 MUHO) received two cycles of a very low-calorie diet, alternating with a hypocaloric diet for 24 weeks. Biochemical, oxidative stress, and inflammatory markers, as well as serum metabolomic analysis by nuclear magnetic resonance, were performed at baseline and at the end of the intervention. After the diet, there was an improvement in insulin resistance, as well as a significant decrease in inflammatory parameters, enhancing oxidative damage, mitochondrial membrane potential, glutathione, and antioxidant capacity. This improvement was more significant in the MUHO group. The metabolomic analysis showed a healthier profile in lipoprotein profile. Lipid carbonyls also decrease at the same time as unsaturated fatty acids increase. We also display a small decrease in succinate, glycA, alanine, and BCAAs (valine and isoleucine), and a slight increase in taurine. These findings show that moderate weight reduction leads to an improvement in lipid profile and subfractions and a reduction in oxidative stress and inflammatory markers; these changes are more pronounced in the MUHO population.
RESUMO
Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.
RESUMO
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver. To date, there is a lack of knowledge about the subtype of lipid structures affected in the early stages of NAFLD. The aim of this study was to analyze serum and liver lipid moieties, specifically unsaturations and carbonyls, by nuclear magnetic resonance (NMR) in a subclinical Wistar rat model of NAFLD for detecting early alterations and potential sex dimorphisms. Twelve weeks of a high-fat diet (HFD) induced fat accumulation in the liver to a similar extent in male and female Wistar rats. In addition to total liver fat accumulation, Wistar rats showed a shift in lipid subtype composition. HFD rats displayed increased lipid carbonyls in both liver and serum, and decreased in unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), with a much stronger effect in male than female animals. Our results revealed that the change in fat was not only quantitative but also qualitative, with dramatic shifts in relevant lipid structures. Finally, we compared the results found in Wistar rats with an analysis in a human patient cohort of extreme obesity. For the first time to our knowledge, lipid carbonyl levels and lipoproteins profiles were analyzed in the context of subclinical NAFLD. The association found between lipid carbonyls and alanine aminotransferase (ALT) in a human cohort of extremely obese individuals further supports the potential role of lipid moieties as biomarkers of early NAFLD.
RESUMO
The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects.
RESUMO
Early life stress (ELS) is associated with metabolic, cognitive, and psychiatric diseases and has a very high prevalence, highlighting the urgent need for a better understanding of the versatile physiological changes and identification of predictive biomarkers. In addition to programming the hypothalamic-pituitary-adrenal (HPA) axis, ELS may also affect the gut microbiota and metabolome, opening up a promising research direction for identifying early biomarkers of ELS-induced (mal)adaptation. Other factors affecting these parameters include maternal metabolic status and diet, with maternal obesity shown to predispose offspring to later metabolic disease. The aim of the present study was to investigate the long-term effects of ELS and maternal obesity on the metabolic and stress phenotype of rodent offspring. To this end, offspring of both sexes were subjected to an adverse early-life experience, and their metabolic and stress phenotypes were examined. In addition, we assessed whether a prenatal maternal and an adult high-fat diet (HFD) stressor further shape observed ELS-induced phenotypes. We show that ELS has long-term effects on male body weight (BW) across the lifespan, whereas females more successfully counteract ELS-induced weight loss, possibly by adapting their microbiota, thereby stabilizing a balanced metabolome. Furthermore, the metabolic effects of a maternal HFD on BW are exclusively triggered by a dietary challenge in adult offspring and are more pronounced in males than in females. Overall, our study suggests that the female microbiota protects against an ELS challenge, rendering them more resilient to additional maternal- and adult nutritional stressors than males.
Assuntos
Experiências Adversas da Infância , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Camundongos , Feminino , Masculino , Humanos , Gravidez , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Roedores , Biomarcadores , Efeitos Tardios da Exposição Pré-Natal/metabolismoRESUMO
BACKGROUND: A new definition of metabolically healthy obesity (MHO) has recently been proposed to stratify the heterogeneous mortality risk of obesity. Metabolomic profiling provides clues to metabolic alterations beyond clinical definition. We aimed to evaluate the association between MHO and cardiovascular events and assess its metabolomic pattern. METHODS: This prospective study included Europeans from two population-based studies, the FLEMENGHO and the Hortega study. A total of 2339 participants with follow-up were analyzed, including 2218 with metabolomic profiling. Metabolic health was developed from the third National Health and Nutrition Examination Survey and the UK biobank cohorts and defined as systolic blood pressure < 130 mmHg, no antihypertensive drugs, waist-to-hip ratio < 0.95 for women or 1.03 for men, and the absence of diabetes. BMI categories included normal weight, overweight, and obesity (BMI < 25, 25-30, ≥ 30 kg/m2). Participants were classified into six subgroups according to BMI category and metabolic healthy status. Outcomes were fatal and nonfatal composited cardiovascular events. RESULTS: Of 2339 participants, the mean age was 51 years, 1161 (49.6%) were women, 434 (18.6%) had obesity, 117 (5.0%) were classified as MHO, and both cohorts had similar characteristics. Over a median of 9.2-year (3.7-13.0) follow-up, 245 cardiovascular events occurred. Compared to those with metabolically healthy normal weight, individuals with metabolic unhealthy status had a higher risk of cardiovascular events, regardless of BMI category (adjusted HR: 3.30 [95% CI: 1.73-6.28] for normal weight, 2.50 [95% CI: 1.34-4.66] for overweight, and 3.42 [95% CI: 1.81-6.44] for obesity), whereas those with MHO were not at increased risk of cardiovascular events (HR: 1.11 [95% CI: 0.36-3.45]). Factor analysis identified a metabolomic factor mainly associated with glucose regulation, which was associated with cardiovascular events (HR: 1.22 [95% CI: 1.10-1.36]). Individuals with MHO tended to present a higher metabolomic factor score than those with metabolically healthy normal weight (0.175 vs. -0.057, P = 0.019), and the score was comparable to metabolically unhealthy obesity (0.175 vs. -0.080, P = 0.91). CONCLUSIONS: Individuals with MHO may not present higher short-term cardiovascular risk but tend to have a metabolomic pattern associated with higher cardiovascular risk, emphasizing a need for early intervention.
Assuntos
Doenças Cardiovasculares , Obesidade Metabolicamente Benigna , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Obesidade Metabolicamente Benigna/diagnóstico , Obesidade Metabolicamente Benigna/epidemiologia , Sobrepeso , Fatores de Risco , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos Prospectivos , Inquéritos Nutricionais , Índice de Massa Corporal , Obesidade/diagnóstico , Obesidade/epidemiologia , Fatores de Risco de Doenças Cardíacas , FenótipoRESUMO
Selenium is a trace mineral essential for life that acts physiologically through selenoproteins. Among other actions, the endogenous antioxidant selenoprotein glutathione peroxidase and the selenium transporter in blood, selenoprotein P, seem to play an important role in type 2 diabetes mellitus and insulin resistance by weakening the insulin signaling cascade through different mechanisms. Recent findings also suggest that selenoproteins also affect insulin biosynthesis and insulin secretion. This review discussed the role of selenium in type 2 diabetes and the complex interplay between selenoproteins and insulin pathways.
RESUMO
Pre-pregnancy obesity and excessive gestational weight gain (GWG) appear to affect birth weight and the offspring's risk of obesity and disease later in life. However, the identification of the mediators of this relationship, could be of clinical interest, taking into account the presence of other confounding factors, such as genetics and other shared influences. The aim of this study was to evaluate the metabolomic profiles of infants at birth (cord blood) and 6 and 12 months after birth to identify offspring metabolites associated with maternal GWG. Nuclear Magnetic Resonance (NMR) metabolic profiles were measured in 154 plasma samples from newborns (82 cord blood samples) and in 46 and 26 of these samples at 6 months and 12 months of age, respectively. The levels of relative abundance of 73 metabolomic parameters were determined in all the samples. We performed univariate and machine-learning analysis of the association between the metabolic levels and maternal weight gain adjusted for mother's age, Body Mass Index (BMI), diabetes, diet adherence and infant sex. Overall, our results showed differences, both at the univariate level and in the machine-learning models, between the offspring, according to the tertiles of maternal weight gain. Some of these differences were resolved at 6 and 12 months of age, whereas some others remained. Lactate and leucine were the metabolites with the strongest and longest association with maternal weight gain during pregnancy. Leucine, as well as other significant metabolites, have been associated in the past with metabolic wellness in both general and obese populations. Our results suggest that the metabolic changes associated to excessive GWG are present in children from early life.
RESUMO
Metabolic-associated fatty liver disease (MAFLD) refers to the build-up of fat in the liver associated with metabolic dysfunction and has been estimated to affect a quarter of the population worldwide. Although metabolism is highly influenced by the effects of sex hormones, studies of sex differences in the incidence and progression of MAFLD are scarce. Metabolomics represents a powerful approach to studying these differences and identifying potential biomarkers and putative mechanisms. First, metabolomics makes it possible to obtain the molecular phenotype of the individual at a given time. Second, metabolomics may be a helpful tool for classifying patients according to the severity of the disease and obtaining diagnostic biomarkers. Some studies demonstrate associations between circulating metabolites and early and established MAFLD, but little is known about how metabolites relate to and encompass sex differences in disease progression and risk management. In this review, we will discuss the epidemiological metabolomic studies for sex differences in the development and progression of MAFLD, the role of metabolic profiles in understanding mechanisms and identifying sex-dependent biomarkers, and how this evidence may help in the future management of the disease.
RESUMO
BACKGROUND: The potential joint influence of metabolites on bone fragility has been rarely evaluated. We assessed the association of plasma metabolic patterns with bone fragility endpoints (primarily, incident osteoporosis-related bone fractures, and, secondarily, bone mineral density BMD) in the Hortega Study participants. Redox balance plays a key role in bone metabolism. We also assessed differential associations in participant subgroups by redox-related metal exposure levels and candidate genetic variants. MATERIAL AND METHODS: In 467 participants older than 50 years from the Hortega Study, a representative sample from a region in Spain, we estimated metabolic principal components (mPC) for 54 plasma metabolites from NMR-spectrometry. Metals biomarkers were measured in plasma by AAS and in urine by HPLC-ICPMS. Redox-related SNPs (N = 341) were measured by oligo-ligation assay. RESULTS: The prospective association with incident bone fractures was inverse for mPC1 (non-essential and essential amino acids, including branched-chain, and bacterial co-metabolites, including isobutyrate, trimethylamines and phenylpropionate, versus fatty acids and VLDL) and mPC4 (HDL), but positive for mPC2 (essential amino acids, including aromatic, and bacterial co-metabolites, including isopropanol and methanol). Findings from BMD models were consistent. Participants with decreased selenium and increased antimony, arsenic and, suggestively, cadmium exposures showed higher mPC2-associated bone fractures risk. Genetic variants annotated to 19 genes, with the strongest evidence for NCF4, NOX4 and XDH, showed differential metabolic-related bone fractures risk. CONCLUSIONS: Metabolic patterns reflecting amino acids, microbiota co-metabolism and lipid metabolism were associated with bone fragility endpoints. Carriers of redox-related variants may benefit from metabolic interventions to prevent the consequences of bone fragility depending on their antimony, arsenic, selenium, and, possibly, cadmium, exposure levels.
Assuntos
Arsênio , Fraturas Ósseas , Selênio , Humanos , Cádmio , Antimônio , Densidade Óssea/genética , OxirreduçãoRESUMO
Background: Fat deposition is associated with adverse outcomes. Waist-to-hip (WHR) ratio is a simple feasible index to assess fat distribution. Lipoprotein particle composition in relation to WHR and to what extent their association is mediated by insulin sensitivity are less investigated. Methods: In 504 randomly recruited Flemish (mean age: 48.9 years; women: 51.6%), we analyzed the lipoprotein particle constitutions using nuclear magnetic resonance spectroscopy. WHR obesity described a WHR of ≥ 0.85 for women or 0.9 for men. Insulin sensitivity was evaluated by the homeostasis model assessment-estimated insulin resistance (HOMA-IR). SCORE-2 risk algorithm was applied to estimate 10-year cardiovascular risk. Statistical methods included multivariable-adjusted linear regression analysis, logistic regression analysis, and mediation analysis. Results: The prevalence of WHR obesity was 54.6%, approximately 3 times of BMI-determined obesity (19.1%). Individuals with WHR obesity had significantly higher metabolic complications, such as hypertension (57.1%), dyslipidemia (61.8%), and insulin resistance (14.2%). WHR and WHR obesity were positively associated with total very-low-density lipoprotein (VLDL) particle concentration, remnant cholesterol, and triglycerides, but were negatively associated with VLDL particle size (P ≤ 0.027), independent of body mass index and other covariates. WHR was inversely associated with total high-density lipoprotein (HDL) particle concentration, whereas WHR obesity was inversely associated with HDL cholesterol (P ≤ 0.039). Neither WHR nor WHR obesity was associated with the concentration of total low-density lipoprotein (LDL) particles, LDL particle size, and LDL cholesterol (P ≥ 0.089). In the mediation analysis, insulin sensitivity significantly mediated the effect of WHR on total VLDL particle concentration (mediation percentage: 37.0%), remnant cholesterol (47.7%), and HDL cholesterol (41.1%). Individuals with WHR obesity were at increased cardiovascular risk, regardless of LDL cholesterol (P ≤0.028). In WHR obesity, higher total VLDL particle concent36ration and remnant cholesterol, and lower HDL cholesterol were associated with an increased cardiovascular risk (P≤ 0.002). Conclusions: Upper-body fat deposition was independently associated with an unfavorable lipoprotein profile, and insulin sensitivity significantly mediated this association. LDL cholesterol might underestimate lipid abnormality for people with upper-body obesity and lowering VLDL particles and remnant cholesterol might potentially reduce the residual cardiovascular risk.
Assuntos
Resistência à Insulina , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , HDL-Colesterol , LDL-Colesterol , Lipoproteínas/metabolismo , Obesidade/complicações , Obesidade/epidemiologia , ColesterolRESUMO
Aging is associated with an increased risk of frailty, disability, and mortality. Strategies to delay the degenerative changes associated with aging and frailty are particularly interesting. We treated old animals with small extracellular vesicles (sEVs) derived from adipose mesenchymal stem cells (ADSCs) of young animals, and we found an improvement in several parameters usually altered with aging, such as motor coordination, grip strength, fatigue resistance, fur regeneration, and renal function, as well as an important decrease in frailty. ADSC-sEVs induced proregenerative effects and a decrease in oxidative stress, inflammation, and senescence markers in muscle and kidney. Moreover, predicted epigenetic age was lower in tissues of old mice treated with ADSC-sEVs and their metabolome changed to a youth-like pattern. Last, we gained some insight into the microRNAs contained in sEVs that might be responsible for the observed effects. We propose that young sEV treatment can promote healthy aging.
RESUMO
Meningioma is the most common intracranial tumor in adulthood. With a clear female predominance and a recurrence rate that reaches 20%, it is, despite being considered a benign tumor, a pathology that greatly compromises post-diagnosis quality of life. Its prone to recur or progress to a higher degree is difficult to predict in the absence of obvious histological criteria. This project aims to develop an automatic methodology to aid in the diagnosis of meningiomas that is objective and easily reproducible. The methodology is based on histopathological image analysis using artificial intelligence and machine learning algorithms. It includes a semi-automatic process of identification and cleaning of the scanned samples, an automatic detection of the nuclei of each image and, finally, the parameterization of the samples. The obtained data together with the clinical information will be analyzed using statistical methods in order to provide a methodology to support clinical diagnosis and decision-making in patient management. The result is the development of an effective methodology that generates a set of data associated with morphological parameters with different trends according to the pathological groups studied. A tool has been developed that allows an effective semiautomatic analysis of the images to evaluate these parameters in an objective and reproducible way, helping in clinical decision-making and facilitating to undertake projects with large sample series. Clinical Relevance- The main contribution of this project is in the field of neuropathology, for the diagnosis of meningiomas, the most common brain tumor. The present project provides an objective and quantifiable prognosis methodology for the meningiomas, offering a more precise monitoring of the treatment applied to the patient, resulting in a better prognosis and better quality of life.
Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Adulto , Inteligência Artificial , Feminino , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico por imagem , Meningioma/patologia , Qualidade de VidaRESUMO
Meningioma (MN) is an important cause of disability, and predictive tools for estimating the risk of recurrence are still scarce. The need for objective and cost-effective techniques addressed to this purpose is well known. In this study, we present methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) as a friendly method for deepening the understanding of the mechanisms underlying meningioma progression. A large follow-up allowed us to obtain 50 samples, which included the primary tumor of 20 patients in which half of them are suffering one recurrence and the other half are suffering more than one. We histologically characterized the samples and performed MS-MLPA assays validated by FISH to assess their copy number alterations (CNA) and epigenetic status. Interestingly, we determined the increase in tumor instability with higher values of CNA during the progression accompanied by an increase in epigenetic damage. We also found a loss of HIC1 and the hypermethylation of CDKN2B and PTEN as independent prognostic markers. Comparison between grade 1 and higher primary MN's self-evolution pointed to a central role of GSTP1 in the first stages of the disease. Finally, a high rate of alterations in genes that are related to apoptosis and autophagy, such as DAPK1, PARK2, BCL2, FHIT, or VHL, underlines an important influence on cell-death programs through different pathways.
RESUMO
Bone pathologies such as osteoporosis (OTP) and osteoarthritis (OA) are rising in incidence with the worldwide rise in life expectancy. The diagnosis is usually obtained using imaging techniques such as densitometry, but with both being multifactorial diseases, several molecular mechanisms remain to be understood. Metabolomics offers the potential to detect global changes which can lead to the identification of biomarkers and a better insight in the progress of the diseases. Our aim was to compare the metabolic profiles of a cohort of 100 postmenopausal women, including subcapital hip fragility fracture patients, women with severe OA of the hip that required the implantation of a hip prosthesis and controls, to find altered metabolites and networks. Nuclear magnetic resonance (NMR) spectroscopy was used to obtain the metabolomic profiles of peripheral blood derived serum, and statistical analysis was performed using MATLAB V.6.5. 30 of the 73 metabolites analysed showed statistically significant differences in a 3-way ANOVA, and 11 of them were present in the comparison between OA and controls after adjustment by covariates, including amino acids, energy metabolism metabolites and phospholipid precursors. PLS-DA analysis shows a good discrimination between controls and fracture subjects with OA patients, and ROC curve analysis demonstrates that control and fracture subjects were accurately discriminated using the metabolome, but not OA. These results point to OA as an intermediate metabolic state between controls and fracture, and suggest that some metabolic shifts that happen after a fracture are also present at weaker intensity in the OA process.
RESUMO
Desmoplastic infantile astrocytoma (DIA) is rare, cystic and solid tumor of infants usually found in superficial cerebral hemispheres. Although DIA is usually benign, uncommon cases bearing malignant histological and aggressive clinical features have been described in the literature. We report a newborn patient who was diagnosed with a DIA and died postresection. Pathologic examination revealed that the main part of the tumor had benign features, but the internal region showed areas with a more aggressive appearance, with higher-proliferative cells, anaplastic GFAP positive cells with cellular polymorphism, necrosis foci, vascular hyperplasia with endothelial proliferation and microtrombosis. Genetic study, performed in both regions of the tumor, showed a BRAF V600E mutation and a homozygous deletion in PTEN, without changes in other relevant genes like EGFR, CDKN2A, TP53, NFKBIA, CDK4, MDM2 and PDGFRA. Although PTEN homozygous deletions are described in gliomas, the present case constitutes the first report of a PTEN mutation in a DIA, and this genetic feature may be related to the malignant behavior of a usually benign tumor. These genetic findings may point at the need of further and deeper genetic characterization of DIAs, in order to better understand the biology of this tumor and to obtain new prognostic approaches, a better clinical management and targeted therapies, especially in malignant cases of DIA.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Ganglioglioma , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Ganglioglioma/genética , Homozigoto , Humanos , Mutação/genética , PTEN Fosfo-Hidrolase/genética , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Deleção de SequênciaRESUMO
Adult morbid obesity is defined as abnormal or excessive fat accumulation, mostly resulting from a long-term unhealthy lifestyle. Between 10% and 30% of people with obesity exhibit low cardiometabolic risk. The metabolic syndrome has been suggested as an indicator of obesity-related metabolic dysregulation. Although the prevalence of obesity does not seem to be sex-related and metabolic syndrome occurs at all ages, in the last few years, sex-specific differences in the pathophysiology, diagnosis, and treatment of metabolic syndrome have received attention. The aim of this study was to determine the prevalence of metabolic syndrome and its components in different sex and age groups in people with metabolic unhealthy obesity and to compare them with people with metabolic healthy obesity. We analyzed the metabolome in 1350 well-phenotyped morbidly obese individuals and showed that there is a strong sex-dependent association of metabolic syndrome with circulating metabolites. Importantly, we demonstrated that metabolic dysregulation in women and men with severe obesity and metabolic syndrome is age-dependent. The metabolic profiles from our study showed age-dependent sex differences in the impact of MetS which are consistent with the cardiometabolic characterization. Although there is common ground for MetS in the metabolome of severe obesity, men older than 54 are affected in a more extensive and intensive manner. These findings strongly argue for more studies aimed at unraveling the mechanisms that underlie this sex-specific metabolic dysregulation in severe obesity. Moreover, these findings suggest that women and men might benefit from differential sex and age specific interventions to prevent the adverse cardiometabolic effects of severe obesity.
RESUMO
Metabolic impairments and liver and adipose depots alterations were reported in subjects with Alzheimer's disease (AD), highlighting the role of the liver-adipose-tissue-brain axis in AD pathophysiology. The gut microbiota might play a modulating role. We investigated the alterations to the liver and white/brown adipose tissues (W/BAT) and their relationships with serum and gut metabolites and gut bacteria in a 3xTg mouse model during AD onset (adulthood) and progression (aging) and the impact of high-fat diet (HFD) and intranasal insulin (INI). Glucose metabolism (18FDG-PET), tissue radiodensity (CT), liver and W/BAT histology, BAT-thermogenic markers were analyzed. 16S-RNA sequencing and mass-spectrometry were performed in adult (8 months) and aged (14 months) 3xTg-AD mice with a high-fat or control diet. Generalized and HFD resistant deficiency of lipid accumulation in both liver and W/BAT, hypermetabolism in WAT (adulthood) and BAT (aging), abnormal cytokine-hormone profiles, and liver inflammation were observed in 3xTg mice; INI could antagonize all these alterations. Specific gut microbiota-metabolome profiles correlated with a significant disruption of the gut-microbiota-liver-adipose axis in AD mice. In conclusion, fat dystrophy in liver and adipose depots contributes to AD progression, and associates with altered profiles of the gut microbiota, which candidates as an appealing early target for preventive intervention.