RESUMO
The sequences of the bla(TEM) genes encoding TEM-92 in Proteus mirabilis and Providencia stuartii isolates were determined and were found to be identical. Except for positions 218 (Lys-6) and 512 (Lys-104), the nucleotide sequence of bla(TEM-92) was identical to that of bla(TEM-20), including the sequence of the promoter region harboring a 135-bp deletion combined with a G-162-->T substitution. The deduced amino acid sequence of TEM-92 differed from that of TEM-52 by the presence of a substitution (Gln-6-->Lys) in the peptide signal.
Assuntos
Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/enzimologia , Providencia/efeitos dos fármacos , Providencia/enzimologia , beta-Lactamases/genética , Substituição de Aminoácidos , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Genes Bacterianos , Humanos , Testes de Sensibilidade Microbiana , Regiões Promotoras Genéticas , Infecções por Proteus/tratamento farmacológico , Infecções por Proteus/microbiologia , Proteus mirabilis/genética , Providencia/genética , Análise de Sequência de DNA , Resistência beta-LactâmicaRESUMO
beta-methylaspartate ammonia-lyase, EC 4.3.1.2, (beta-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b, respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)-3a yielded the alpha, beta-substituted beta-lactone (3R,4R) 6 with a very high diastereoisomeric excess (> 95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl beta-(2R,3S)-3-methylmalate] 8, prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7, to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of beta-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions.