Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8023): 50-54, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39020171

RESUMO

Giant exoplanets orbiting close to their host stars are unlikely to have formed in their present configurations1. These 'hot Jupiter' planets are instead thought to have migrated inward from beyond the ice line and several viable migration channels have been proposed, including eccentricity excitation through angular-momentum exchange with a third body followed by tidally driven orbital circularization2,3. The discovery of the extremely eccentric (e = 0.93) giant exoplanet HD 80606 b (ref. 4) provided observational evidence that hot Jupiters may have formed through this high-eccentricity tidal-migration pathway5. However, no similar hot-Jupiter progenitors have been found and simulations predict that one factor affecting the efficacy of this mechanism is exoplanet mass, as low-mass planets are more likely to be tidally disrupted during periastron passage6-8. Here we present spectroscopic and photometric observations of TIC 241249530 b, a high-mass, transiting warm Jupiter with an extreme orbital eccentricity of e = 0.94. The orbit of TIC 241249530 b is consistent with a history of eccentricity oscillations and a future tidal circularization trajectory. Our analysis of the mass and eccentricity distributions of the transiting-warm-Jupiter population further reveals a correlation between high mass and high eccentricity.

2.
Science ; 382(6674): 1031-1035, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033084

RESUMO

Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet's orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10-4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

3.
Astron J ; 161(6)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505866

RESUMO

The comblike spectrum of a white light-illuminated Fabry-Pérot etalon can serve as a cost-effective and stable reference for precise Doppler measurements. Understanding the stability of these devices across their broad (hundreds of nanometers) spectral bandwidths is essential to realizing their full potential as Doppler calibrators. However, published descriptions remain limited to small bandwidths or short time spans. We present an ~6 month broadband stability monitoring campaign of the Fabry-Pérot etalon system deployed with the near-infrared Habitable Zone Planet Finder (HPF) spectrograph. We monitor the wavelengths of each of ~3500 resonant modes measured in HPF spectra of this Fabry-Pérot etalon (free spectral range = 30 GHz, bandwidth = 820-1280 nm), leveraging the accuracy and precision of an electro-optic frequency comb reference. These results reveal chromatic structure in the Fabry-Pérot mode locations and their evolution with time. We measure an average drift on the order of 2 cm s-1 day-1, with local departures up to ±5 cm s-1 day-1. We discuss these behaviors in the context of the Fabry-Pérot etalon mirror dispersion and other optical properties of the system and the implications for the use of similar systems for precise Doppler measurements. Our results show that this system supports the wavelength calibration of HPF at the ≲10 cm s-1 level over a night and the ≲30 cm s-1 level over ~10 days. Our results also highlight the need for long-term and spectrally resolved study of similar systems that will be deployed to support Doppler measurement precision approaching ~10 cm s-1.

4.
Nature ; 587(7834): 387-391, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208957

RESUMO

Stellar mergers are a brief but common phase in the evolution of binary star systems1,2. These events have many astrophysical implications; for example, they may lead to the creation of atypical stars (such as magnetic stars3, blue stragglers4 and rapid rotators5), they play an important part in our interpretation of stellar populations6 and they represent formation channels of compact-object mergers7. Although a handful of stellar mergers have been observed directly8,9, the central remnants of these events were shrouded by an opaque shell of dust and molecules10, making it impossible to observe their final state (for example, as a single merged star or a tighter, surviving binary11). Here we report observations of an unusual, ring-shaped ultraviolet ('blue') nebula and the star at its centre, TYC 2597-735-1. The nebula has two opposing fronts, suggesting a bipolar outflow of material from TYC 2597-735-1. The spectrum of TYC 2597-735-1 and its proximity to the Galactic plane suggest that it is an old star, yet it has abnormally low surface gravity and a detectable long-term luminosity decay, which is uncharacteristic for its evolutionary stage. TYC 2597-735-1 also exhibits Hα emission, radial-velocity variations, enhanced ultraviolet radiation and excess infrared emission-signatures of dusty circumstellar disks12, stellar activity13 and accretion14. Combined with stellar evolution models, the observations suggest that TYC 2597-735-1 merged with a lower-mass companion several thousand years ago. TYC 2597-735-1 provides a look at an unobstructed stellar merger at an evolutionary stage between its dynamic onset and the theorized final equilibrium state, enabling the direct study of the merging process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA