Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1337152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298606

RESUMO

Cryopreservation, or the storage at liquid nitrogen temperatures (-196°C), of embryogenic cells or somatic embryos allows their long-term conservation without loss of their embryogenic capacity. During the last decade, protocols for cryopreservation of embryogenic material of woody species have been increasing in number and importance. However, despite the large experimental evidence proved in thousands of embryogenic lines, the application for the large-scale conservation of embryogenic material in cryobanks is still limited. Cryopreservation facilitates the management of embryogenic lines, reducing costs and time spent on their maintenance, thus limiting the risk of the appearance of somaclonal variation or contamination. Somatic embryogenesis in combination with cryopreservation is especially useful to preserve the juvenility of lines while the corresponding clones are being field-tested. Hence, when tree performance has been evaluated, selected varieties can be propagated from the cryostock. The traditional method of slow cooling or techniques based on vitrification are mostly applied procedures. For example, slow cooling methods are widely applied to conserve embryogenic lines of conifers. Desiccation based procedures, although simpler, have been applied in a smaller number of species. Genetic stability of the cryopreserved material is supported by multiloci PCR-derived markers in most of the assayed species, whereas DNA methylation status assays showed that cryopreservation might induce some changes that were also observed after prolonged subculture of the embryogenic lines. This article reviews the cryopreservation of embryogenic cultures in conifers, fruit species, deciduous forest species and palms, including a description of the different cryopreservation procedures and the analysis of their genetic stability after storage in liquid nitrogen.

2.
Front Plant Sci ; 12: 771464, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899795

RESUMO

Changes in the chemical environment at the maturation stage in Pinus spp. somatic embryogenesis will be a determinant factor in the conversion of somatic embryos to plantlets. Furthermore, the study of biochemical and morphological aspects of the somatic embryos could enable the improvement of somatic embryogenesis in Pinus spp. In the present work, the influence of different amino acid combinations, carbohydrate sources, and concentrations at the maturation stage of Pinus radiata D. Don and Pinus halepensis Mill. was analyzed. In P. radiata, the maturation medium supplemented with 175 mM of sucrose and an increase in the amino acid mixture (1,100 mgL-1 of L-glutamine, 1,050 mgL-1 of L-asparagine, 350 mgL-1 of L-arginine, and 35 mgL-1 of L-proline) promoted bigger embryos, with a larger stem diameter and an increase in the number of roots in the germinated somatic embryos, improving the acclimatization success of this species. In P. halepensis, the maturation medium supplemented with 175 mM of maltose improved the germination of somatic embryos. The increase in the amount of amino acids in the maturation medium increased the levels of putrescine in the germinated somatic embryos of P. halepensis. We detected significant differences in the amounts of polyamines between somatic plantlets of P. radiata and P. halepensis; putrescine was less abundant in both species. For the first time, in P. radiata and P. halepensis somatic embryogenesis, we detected the presence of cadaverine, and its concentration changed according to the species.

3.
Methods Mol Biol ; 1359: 405-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26619876

RESUMO

Somatic embryogenesis (SE) has been the most important development for plant tissue culture, not only for mass propagation but also for enabling the implementation of biotechnological tools that can be used to increase the productivity and wood quality of plantation forestry. Development of SE in forest trees started in 1985 and nowadays many studies are focused on the optimization of conifer SE system. However, these advances for many Pinus spp. are not sufficiently refined to be implemented commercially. In this chapter, a summary of the main systems used to achieve SE in Pinus spp. is reported.


Assuntos
Pinus/crescimento & desenvolvimento , Desenvolvimento Vegetal/genética , Técnicas de Embriogênese Somática de Plantas/métodos , Técnicas de Cultura de Tecidos/métodos , Agricultura Florestal , Germinação/genética , Pinus/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Madeira/genética , Madeira/crescimento & desenvolvimento
4.
Physiol Plant ; 148(2): 214-31, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23043692

RESUMO

In Pinus radiata D. Don, the transition from the juvenile to the mature phase is characterized by a reduction in the tree's organogenic potential, which is usually reverted in breeding programs by reinvigoration procedures to enable vegetative propagation. In this work, we have determined the best culture conditions for in vitro reinvigoration of radiata pine buds, tested different cytokinin (CK) types [N6-benzyladenine (BA), meta-topolin (mT) and trans-zeatin] and concentrations (25 and 50 µM), and studied the effect of culture conditions on endogenous CK and indole-3-acetic acid (IAA) levels at different stages of the organogenic process. To this end, the levels of 43 CKs and IAA were determined in P. radiata buds before and during the reinvigoration process. When BA or mT was applied to the induction medium, we did not observe any significant increase or decrease in endogenous isoprenoid CK content. We also report for the first time the presence of O-glucosides in non-treated P. radiata explants from the field and remark the importance of O-glucosides as storage forms.


Assuntos
Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Pinus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Compostos de Benzil , Cromatografia Líquida , Citocininas/análise , Citocininas/farmacologia , Glucosídeos/análise , Glucosídeos/metabolismo , Ácidos Indolacéticos/análise , Cinetina/farmacologia , Espectrometria de Massas , Pinus/efeitos dos fármacos , Pinus/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/análise , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Purinas , Terpenos/análise , Terpenos/metabolismo , Árvores , Zeatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA