Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39436333

RESUMO

PURPOSE: Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work. METHODS AND MATERIALS: Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts. RESULTS: Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition. CONCLUSIONS: Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.

2.
Radiat Environ Biophys ; 63(3): 337-350, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115696

RESUMO

Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.


Assuntos
Condrócitos , Colágeno , Condrócitos/efeitos da radiação , Condrócitos/metabolismo , Animais , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Projetos Piloto , Sobrevivência Celular/efeitos da radiação , Peptídeos , Bovinos , Células Cultivadas
3.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046623

RESUMO

Chondrosarcoma is a malignant cartilaginous tumor that is particularly chemoresistant and radioresistant to X-rays. The first line of treatment is surgery, though this is almost impossible in some specific locations. Such resistances can be explained by the particular composition of the tumor, which develops within a dense cartilaginous matrix, producing a resistant area where the oxygen tension is very low. This microenvironment forces the cells to adapt and dedifferentiate into cancer stem cells, which are described to be more resistant to conventional treatments. One of the main avenues considered to treat this type of tumor is hadrontherapy, in particular for its ballistic properties but also its greater biological effectiveness against tumor cells. In this review, we describe the different forms of chondrosarcoma resistance and how hadrontherapy, combined with other treatments involving targeted inhibitors, could help to better treat high-grade chondrosarcoma.

4.
Cancers (Basel) ; 14(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740495

RESUMO

Survival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses. Several biological mechanisms have been found to be involved in the chemoradioresistance such as cancer stem cells, cancer mutation status, or the immune system. New drugs to overcome this radioresistance in NSCLCs have been investigated such as radiosensitizer treatments or immunotherapies. Different modalities of radiotherapy have also been investigated to improve efficacity such as dose escalation or proton irradiations. In this review, we focused on biological mechanisms such as the cancer stem cells, the cancer mutations, the antitumor immune response in the first part, then we explored some strategies to overcome this radioresistance in stage III NSCLCs with new drugs or radiotherapy modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA