RESUMO
BACKGROUND: To address multidrug resistance, we developed engineered Cationic Antimicrobial Peptides (eCAPs). Lead eCAP WLBU2 displays potent activity against drug-resistant bacteria and effectively treats lethal bacterial infections in mice, reducing bacterial loads to undetectable levels in diverse organs. OBJECTIVE: To support the development of WLBU2, we conducted a mass balance study. METHODS: CD1 mice were administered 10, 15, 20 and 30 mg/kg of QDx5 WLBU2 or a single dose of [14C]-WLBU2 at 15 mg/kg IV. Tolerability, tissue distribution and excretion were evaluated with liquid scintillation and HPLC-radiochromatography. RESULTS: The maximum tolerated dose of WLBU2 is 20 mg/kg IV. We could account for greater than >96% of the radioactivity distributed within mouse tissues at 5 and 15 min. By 24h, only ~40-50% of radioactivity remained in the mice. The greatest % of the dose was present in liver, accounting for ~35% of radioactivity at 5 and 15 min, and ~ 8% of radioactivity remained at 24h. High radioactivity was also present in kidneys, plasma, red blood cells and lungs, while less than 0.2% of radioactivity was present in brain, fat, or skeletal muscle. Urinary and fecal excretion accounted for 12.5 and 2.2% of radioactivity at 24h. CONCLUSION: WLBU2 distributes widely to mouse tissues and is rapidly cleared with a terminal radioactivity half-life of 22 h, a clearance of 27.4 mL/h/kg, and a distribution volume of 0.94 L/kg. At 2-100 µg-eq/g, the concentrations of 14C-WLBU2 appear high enough in the tissues to account for the inhibition of microbial growth.
Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Bacterianas , Animais , Peptídeos Antimicrobianos , Radioisótopos de Carbono , CamundongosRESUMO
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
RESUMO
In an effort to provide new treatments for the global crisis of bacterial resistance to current antibiotics, we have used a rational approach to design several new antimicrobial peptides (AMPs). The present study focuses on 24-mer WLBU2 and its derivative, D8, with the amino acid sequence, RRWVRRVRRWVRRVVRVVRRWVRR. In D8, all of the valines are the d-enantiomer. We use X-ray low- and wide-angle diffuse scattering data to measure elasticity and lipid chain order. We show a good correlation between in vitro bacterial killing efficiency and both bending and chain order behavior in bacterial lipid membrane mimics; our results suggest that AMP-triggered domain formation could be the mechanism of bacterial killing in both Gram-positive and Gram-negative bacteria. In red blood cell lipid mimics, D8 stiffens and orders the membrane, while WLBU2 softens and disorders it, which correlate with D8's harmless vs. WLBU2's toxic behavior in hemolysis tests. These results suggest that elasticity and chain order behavior can be used to predict mechanisms of bactericidal action and toxicity of new AMPs.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Elasticidade , Lipídeos/química , Membranas Artificiais , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Estereoisomerismo , Valina/químicaRESUMO
OBJECTIVES: Bacterial biofilm-dependent infections (e.g. cystic fibrosis, surgical sites, and medical implants) are associated with enhanced drug-resistance and are thus difficult to eradicate. The goal of this study was to systematically compare three distinct classes of antimicrobial peptides (AMPs) that include the clinically used antibiotic colistin, the natural AMP LL37, the engineered cationic-AMP WLBU2, and four commonly used antibiotics with different bactericidal mechanisms (tobramycin, ciprofloxacin, ceftazidime, and vancomycin) for biofilm prevention properties. METHODS: Using biofilm-prevention assays, we detected bacterial biomass post-attachment in subinhibitory concentrations (1/3 of the minimum inhibitory concentration [MIC]) for each AMP by the crystal violet method, to distinguish the commonly known bactericidal activity from potentially distinct mechanisms of biofilm prevention. Biofilm regulatory gene expression was assessed using RT-qPCR for correlation with biofilm growth inhibition. RESULTS: Commonly used antibiotics at 1x MIC showed modest ESKAPE biofilm prevention while 1/3 MIC of AMPs demonstrated up to 90% biofilm prevention. WLBU2 was generally more effective in preventing bacterial attachment than colistin and LL37. Changes in bacterial biofilm regulatory gene expression were consistent with biofilm prevention. CONCLUSION: The data warrant further exploration of AMPs with optimized structures to fill a knowledge gap on the potential application of AMPs for difficult-to-cure bacterial biofilm-related infections.
Assuntos
Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Adulto , Infecções Bacterianas/microbiologia , Biofilmes/crescimento & desenvolvimento , Criança , Pré-Escolar , Perfilação da Expressão Gênica , Violeta Genciana/análise , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Coloração e Rotulagem , Adulto Jovem , CatelicidinasRESUMO
Antibiotics are unable to remove biofilms from surgical implants. This high antibiotic tolerance is related to bacterial persisters, a sub-population of bacteria phenotypically tolerant to antibiotics secondary to a reduced metabolic state. WLBU2 is an engineered cationic amphipathic peptide designed to maximize antimicrobial activity with minimal mammalian cell toxicity. The objective of this study was to test the ability of WLBU2 to remove Staphylococcus aureus surgical implant biofilms. WLBU2 effectively treated S. aureus biofilms formed by a variety of clinical MSSA and MRSA strains and created culture-negative implants in the in vitro biofilm model. Blocking bacterial metabolism by inhibiting oxidative phosphorylation did not affect WLBU2 killing compared to decreased killing by cefazolin. In the surgical implant infection animal model, WLBU2 decreased biofilm mass as compared to control, untreated samples. WLBU2 could rapidly eliminate implants in vitro and had sufficient efficacy in vivo with minimal systemic toxicity.
Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções Relacionadas à Prótese/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Modelos Animais de Doenças , Camundongos , Fosforilação Oxidativa/efeitos dos fármacosRESUMO
Antimicrobial-resistant infections are an urgent public health threat, and development of novel antimicrobial therapies has been painstakingly slow. Polymicrobial infections are increasingly recognized as a significant source of severe disease and also contribute to reduced susceptibility to antimicrobials. Chronic infections also are characterized by their ability to resist clearance, which is commonly linked to the development of biofilms that are notorious for antimicrobial resistance. The use of engineered cationic antimicrobial peptides (eCAPs) is attractive due to the slow development of resistance to these fast-acting antimicrobials and their ability to kill multidrug-resistant clinical isolates, key elements for the success of novel antimicrobial agents. Here, we tested the ability of an eCAP, WLBU2, to disrupt recalcitrant Pseudomonas aeruginosa biofilms. WLBU2 was capable of significantly reducing biomass and viability of P. aeruginosa biofilms formed on airway epithelium and maintained activity during viral coinfection, a condition that confers extraordinary levels of antibiotic resistance. Biofilm disruption was achieved in short treatment times by permeabilization of bacterial membranes. Additionally, we observed simultaneous reduction of infectivity of the viral pathogen respiratory syncytial virus (RSV). WLBU2 is notable for its ability to maintain activity across a broad range of physiological conditions and showed negligible toxicity toward the airway epithelium, expanding its potential applications as an antimicrobial therapeutic. IMPORTANCE Antimicrobial-resistant infections are an urgent public health threat, making development of novel antimicrobials able to effectively treat these infections extremely important. Chronic and polymicrobial infections further complicate antimicrobial therapy, often through the development of microbial biofilms. Here, we describe the ability of an engineered antimicrobial peptide to disrupt biofilms formed by the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogen Pseudomonas aeruginosa during coinfection with respiratory syncytial virus. We also observed antiviral activity, indicating the ability of engineered antimicrobial peptides to act as cross-kingdom single-molecule combination therapies.
RESUMO
Non-biological synthetic oligomers can serve as ligands for antibodies. We hypothesized that a random combinatorial library of synthetic poly-N-substituted glycine oligomers, or peptoids, could represent a random "shape library" in antigen space, and that some of these peptoids would be recognized by the antigen-binding pocket of disease-specific antibodies. We synthesized and screened a one bead one compound combinatorial library of peptoids, in which each bead displayed an 8-mer peptoid with ten possible different amines at each position (10(8) theoretical variants). By screening one million peptoid/beads we found 112 (approximately 1 in 10,000) that preferentially bound immunoglobulins from human sera known to be positive for anti-HIV antibodies. Reactive peptoids were then re-synthesized and rigorously evaluated in plate-based ELISAs. Four peptoids showed very good, and one showed excellent, properties for establishing a sero-diagnosis of HIV. These results demonstrate the feasibility of constructing sero-diagnostic assays for infectious diseases from libraries of random molecular shapes. In this study we sought a proof-of-principle that we could identify a potential diagnostic antibody ligand biomarker for an infectious disease in a random combinatorial library of 100 million peptoids. We believe that this is the first evidence that it is possible to develop sero-diagnostic assays - for any infectious disease - based on screening random libraries of non-biological molecular shapes.
Assuntos
Técnicas de Química Combinatória/métodos , Anticorpos Anti-HIV/sangue , Infecções por HIV/diagnóstico , Biblioteca de Peptídeos , Peptoides/química , Peptoides/imunologia , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Humanos , Ligantes , Peptoides/síntese químicaRESUMO
OBJECTIVES: Chronic infections with the opportunistic pathogen Pseudomonas aeruginosa are responsible for the majority of the morbidity and mortality in patients with cystic fibrosis (CF). While P. aeruginosa infections may initially be treated successfully with standard antibiotics, chronic infections typically arise as bacteria transition to a biofilm mode of growth and acquire remarkable antimicrobial resistance. To address the critical need for novel antimicrobial therapeutics that can effectively suppress chronic bacterial infections in challenging physiological environments, such as the CF lung, we have rationally designed a de novo engineered cationic antimicrobial peptide, the 24-residue WLBU2, with broad-spectrum antibacterial activity for pan-drug-resistant P. aeruginosa in liquid culture. In the current study, we tested the hypothesis that WLBU2 also prevents P. aeruginosa biofilm growth. METHODS: Using abiotic and biotic biofilm assays, co-culturing P. aeruginosa with polarized human airway epithelial cells, we examined the ability of WLBU2 to prevent biofilm biogenesis alone and in combination with currently used antibiotics. RESULTS: We observed a dose-dependent reduction in biofilm growth on an abiotic surface and in association with CF airway epithelial cells. WLBU2 prevented P. aeruginosa biofilm formation when co-cultured with mucus-producing primary human CF airway epithelial cells and using CF clinical isolates of P. aeruginosa, even at low pH and high salt conditions that mimic the CF airway. When used in combination, WLBU2 significantly increases killing by the commonly used antibiotics tobramycin, ciprofloxacin, ceftazidime and meropenem. CONCLUSIONS: While other studies have demonstrated the ability of natural and synthetic antimicrobial peptides to prevent abiotic bacterial biofilm formation, the current studies for the first time demonstrate the effective peptide treatment of a biotic bacterial biofilm in a setting similar to the CF airway, and without negative effects on human airway epithelial cells, thus highlighting the unique potential of this engineered cationic antimicrobial peptide for treatment of human respiratory infections.
Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Células Epiteliais/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Técnicas de Cocultura , Humanos , Engenharia de Proteínas , Pseudomonas aeruginosa/fisiologia , Proteínas Recombinantes/genéticaRESUMO
We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.
Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Arginina/química , Lisina/química , Pseudomonas aeruginosa/efeitos dos fármacos , Triptofano/química , Farmacorresistência Bacteriana Múltipla , Humanos , Macrófagos/efeitos dos fármacos , Ligação ProteicaRESUMO
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation.
Assuntos
Encefalomielite Autoimune Experimental/imunologia , Infecções por Bactérias Gram-Positivas/imunologia , Bactérias Gram-Positivas Formadoras de Endosporo/imunologia , Intestinos/fisiologia , Receptores de Interleucina-17/metabolismo , Células Th17/imunologia , Animais , Disbiose/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/genética , Interleucina-17/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores de Interleucina-17/genética , Transdução de Sinais/genética , Células Th17/microbiologia , alfa-Defensinas/genética , alfa-Defensinas/metabolismoRESUMO
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.
Assuntos
Anemia Infecciosa Equina/prevenção & controle , Cavalos/imunologia , Vírus da Anemia Infecciosa Equina/imunologia , Vacinas Atenuadas/uso terapêutico , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Variação Antigênica/imunologia , Sequência de Bases , Variação Genética , Vírus da Anemia Infecciosa Equina/genética , Dados de Sequência Molecular , Filogenia , Resultado do Tratamento , Proteínas do Envelope Viral/genética , Vacinas Virais/uso terapêuticoRESUMO
Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings.
Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Rifampina/farmacologiaRESUMO
Unlike other lentiviruses, EIAV replication can be controlled in most infected horses leading to an inapparent carrier state free of overt clinical signs which lasts for many years. While the resolution of the initial infection is correlated with the appearance of virus specific cellular immune responses, the precise immune mechanisms responsible for control of the infection are not yet identified. Since the virus undergoes rapid mutation following infection, the immune response must also adapt to meet this challenge. We hypothesize that this adaptation involves peptide-specific recognition shifting from immunodominant variable determinants to conserved immunorecessive determinants following EIAV infection. Forty-four peptides, spanning the entire surface unit protein (gp90) of EIAV, were used to monitor peptide-specific T cell responses in vivo over a six-month period following infection. Peptides were injected intradermally and punch biopsies were collected for real-time PCR analysis to monitor the cellular peptide-specific immune responses in vivo. Similar to the CMI response to HIV infection, peptide-specific T cell recognition patterns changed over time. Early post infection (1 month), immune responses were directed to the peptides in the carboxyl-terminus variable region. By six months post infection, the peptide recognition spanned the entire gp90 sequence. These results indicate that peptide recognition broadens during EIAV infection.
Assuntos
Epitopos , Anemia Infecciosa Equina/imunologia , Glicoproteínas/metabolismo , Imunidade Celular/fisiologia , Vírus da Anemia Infecciosa Equina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Afinidade de Anticorpos , Anemia Infecciosa Equina/metabolismo , Regulação Viral da Expressão Gênica/imunologia , Variação Genética , Glicoproteínas/genética , Cavalos , Vírus da Anemia Infecciosa Equina/genética , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Chronic tuberculosis in an immunocompetent host is a consequence of the delicately balanced growth of Mycobacterium tuberculosis (Mtb) in the face of host defense mechanisms. We identify an Mtb enzyme (TdmhMtb) that hydrolyzes the mycobacterial glycolipid trehalose dimycolate and plays a critical role in balancing the intracellular growth of the pathogen. TdmhMtb is induced under nutrient-limiting conditions and remodels the Mtb envelope to increase nutrient influx but concomitantly sensitizes Mtb to stresses encountered in the host. Consistent with this, a ΔtdmhMtb mutant is more resilient to stress and grows to levels higher than those of wild-type in immunocompetent mice. By contrast, mutant growth is retarded in MyD88(-/-) mice, indicating that TdmhMtb provides a growth advantage to intracellular Mtb in an immunocompromised host. Thus, the effects and countereffects of TdmhMtb play an important role in balancing intracellular growth of Mtb in a manner that is directly responsive to host innate immunity.
Assuntos
Fatores Corda/metabolismo , Hidrolases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/fisiologia , Animais , Citosol/microbiologia , Deleção de Genes , Hidrolases/genética , Hidrólise , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimentoRESUMO
A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.
Assuntos
Arginina/química , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Peptídeos/química , Motivos de Aminoácidos , Fusão Celular , Separação Celular , Clonagem Molecular , Biologia Computacional , Citometria de Fluxo , Células HEK293 , HIV-1/fisiologia , Humanos , Cinética , Lisina/química , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Replicação ViralRESUMO
Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.
Assuntos
Retroviridae/fisiologia , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Humanos , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Montagem de VírusRESUMO
Antibiotics have been among the most successful classes of therapeutics and have enabled many of modern medicine's greatest advances. However, antibiotic-resistant bacteria are emerging as critical public health threats, with recent accounts of bacterial strains resistant to all approved antibiotics. Antimicrobial peptides (AMPs) are naturally occurring molecules with the potential to serve as the basis for a new class of anti-infectives targeting these difficult-to-treat bacteria. The unique activities and features of AMPs are discussed, with a focus toward the clinical importance of priming the antibiotic pipeline and the role AMPs can fulfill in the future of fighting drug-resistant bacteria.
Assuntos
Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Desenho de Fármacos , Farmacorresistência Bacteriana , HumanosRESUMO
Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.
Assuntos
Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/isolamento & purificação , Descoberta de Drogas/tendências , Anemia Infecciosa Equina/imunologia , Anemia Infecciosa Equina/prevenção & controle , Vírus da Anemia Infecciosa Equina/imunologia , Animais , Variação Antigênica , Variação Genética , Cavalos , Humanos , Vírus da Anemia Infecciosa Equina/genéticaRESUMO
Mutation studies previously showed that the lentivirus lytic peptide (LLP2) sequence of the cytoplasmic C-terminal tail of the HIV-1 gp41 envelope protein inhibited viral-initiated T-cell death and T-cell syncytium formation, at which time in the HIV life cycle the gp41 protein is embedded in the T-cell membrane. In striking contrast, the mutants did not affect virion infectivity, during which time the gp41 protein is embedded in the HIV envelope membrane. To examine the role of LLP2/membrane interactions, we applied synchrotron x-radiation to determine structure of hydrated membranes. We focused on WT LLP2 peptide (+3 charge) and MX2 mutant (-1 charge) with membrane mimics for the T-cell and the HIV-1 membranes. To investigate the influence of electrostatics, cholesterol content, and peptide palmitoylation, we also studied three other LLP2 variants and HIV-1 mimics without negatively charged lipids or cholesterol as well as extracted HIV-1 lipids. All LLP2 peptides bound strongly to T-cell membrane mimics, as indicated by changes in membrane structure and bending. In contrast, none of the weakly bound LLP2 variants changed the HIV-1 membrane mimic structure or properties. This correlates well with, and provides a biophysical basis for, previously published results that reported lack of a mutant effect in HIV virion infectivity in contrast to an inhibitory effect in T-cell syncytium formation. It shows that interaction of LLP2 with the T-cell membrane modulates biological function.