Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Adv Rheumatol ; 64(1): 38, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720354

RESUMO

BACKGROUND: This study examines the association of standard-of-care systemic lupus erythematosus (SLE) medications with key outcomes such as low disease activity attainment, flares, damage accrual, and steroid-sparing, for which there is current paucity of data. METHODS: The Asia Pacific Lupus Collaboration (APLC) prospectively collects data across numerous sites regarding demographic and disease characteristics, medication use, and lupus outcomes. Using propensity score methods and panel logistic regression models, we determined the association between lupus medications and outcomes. RESULTS: Among 1707 patients followed over 12,689 visits for a median of 2.19 years, 1332 (78.03%) patients achieved the Lupus Low Disease Activity State (LLDAS), 976 (57.18%) experienced flares, and on most visits patients were taking an anti-malarial (69.86%) or immunosuppressive drug (76.37%). Prednisolone, hydroxychloroquine and azathioprine were utilised with similar frequency across all organ domains; methotrexate for musculoskeletal activity. There were differences in medication utilisation between countries, with hydroxychloroquine less frequently, and calcineurin inhibitors more frequently, used in Japan. More patients taking leflunomide, methotrexate, chloroquine/hydroxychloroquine, azathioprine, and mycophenolate mofetil/mycophenolic acid were taking ≤ 7.5 mg/day of prednisolone (compared to > 7.5 mg/day) suggesting a steroid-sparing effect. Patients taking tacrolimus were more likely (Odds Ratio [95% Confidence Interval] 13.58 [2.23-82.78], p = 0.005) to attain LLDAS. Patients taking azathioprine (OR 0.67 [0.53-0.86], p = 0.001) and methotrexate (OR 0.68 [0.47-0.98], p = 0.038) were less likely to attain LLDAS. Patients taking mycophenolate mofetil were less likely to experience a flare (OR 0.79 [0.64-0.97], p = 0.025). None of the drugs was associated with a reduction in damage accrual. CONCLUSIONS: This study suggests a steroid-sparing benefit for most commonly used standard of care immunosuppressants used in SLE treatment, some of which were associated with an increased likelihood of attaining LLDAS, or reduced incidence of flares. It also highlights the unmet need for effective treatments in lupus.


Assuntos
Antimaláricos , Azatioprina , Glucocorticoides , Hidroxicloroquina , Imunossupressores , Lúpus Eritematoso Sistêmico , Metotrexato , Prednisolona , Padrão de Cuidado , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Feminino , Imunossupressores/uso terapêutico , Hidroxicloroquina/uso terapêutico , Masculino , Glucocorticoides/uso terapêutico , Adulto , Azatioprina/uso terapêutico , Prednisolona/uso terapêutico , Metotrexato/uso terapêutico , Antimaláricos/uso terapêutico , Estudos de Coortes , Pessoa de Meia-Idade , Ácido Micofenólico/uso terapêutico , Leflunomida/uso terapêutico , Inibidores de Calcineurina/uso terapêutico , Modelos Logísticos , Pontuação de Propensão , Índice de Gravidade de Doença , Tacrolimo/uso terapêutico , Exacerbação dos Sintomas , Resultado do Tratamento , Antirreumáticos/uso terapêutico
3.
Methods ; 226: 102-119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604415

RESUMO

Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.


Assuntos
Biologia Computacional , Proteínas de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/genética , Biologia Computacional/métodos , Humanos , Modelos Moleculares
4.
Data Brief ; 54: 110401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38646191

RESUMO

Functional annotation based on Gene Ontology has provided a structured and comprehensive system to access the current knowledge about the function of genes. For model plants such as Arabidopsis thaliana, there is a constant updating and restructuring of the functional annotation that increases the reliability of the analyses that use it. For tomato (Solanum lycopersicum), a crop widely used as a model plant for the study of fleshy fruits, there is no functional annotation, at least not freely accessible, even though its genome has long been sequenced and annotated. In this work, we generated, using a simplified version of the maize GAMER pipeline, a tomato Gene Ontology functional annotation with 72.42% (ITAG3.2) and 74.2% (ITAG4.0) of protein-coding genes with at least one GO term association. With this dataset, we share a reliable and easy-to-use tool with the tomato community.

5.
Bioengineering (Basel) ; 10(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38135994

RESUMO

Obstruction of the LVAD flow path can occur when blood clots or tissue overgrowth form within the inflow cannula, pump body, or outflow graft, and it can lead to thrombus, embolism, and stroke. The goal of this study was to measure the impact of progressive pump inflow obstruction on the pressure and flow dynamics of the LVAD-supported heart using a mock circulatory loop. Pump obstruction (PO) was produced by progressively blocking a fraction of the LVAD inlet area. Pressures, flows, and the midplane velocity field of the LV were measured for three LVAD speeds and six PO levels. Pressure and flow decreased with PO, shifting more of the flow through the aortic valve such that the total flow decreased by 6-11% and decreased the efficiency of the work of the native heart up to 60%. PO restricts diastolic flow through the LVAD, which reduces mitral inflow and decreases the strength and energy of the intraventricular vortices. The changes in flow architecture produced by PO include flow stasis and increased shear, which predispose the system to thromboembolic risk. Analysis of the contributions to external work may enable early detection, which allows time for therapeutic intervention, reducing the likelihood of pump replacement and the risk of complications.

6.
Commun Biol ; 6(1): 820, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550387

RESUMO

Chia (Salvia hispanica) is an emerging crop considered a functional food containing important substances with multiple potential applications. However, the molecular basis of some relevant chia traits, such as seed mucilage and polyphenol content, remains to be discovered. This study generates an improved chromosome-level reference of the chia genome, resolving some highly repetitive regions, describing methylation patterns, and refining genome annotation. Transcriptomic analysis shows that seeds exhibit a unique expression pattern compared to other organs and tissues. Thus, a metabolic and proteomic approach is implemented to study seed composition and seed-produced mucilage. The chia genome exhibits a significant expansion in mucilage synthesis genes (compared to Arabidopsis), and gene network analysis reveals potential regulators controlling seed mucilage production. Rosmarinic acid, a compound with enormous therapeutic potential, was classified as the most abundant polyphenol in seeds, and candidate genes for its complex pathway are described. Overall, this study provides important insights into the molecular basis for the unique characteristics of chia seeds.


Assuntos
Salvia hispanica , Salvia , Salvia/genética , Multiômica , Proteômica , Sementes/genética , Polissacarídeos
7.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903899

RESUMO

Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.

8.
BMC Genomics ; 24(1): 11, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627552

RESUMO

BACKGROUND: Gossypium barbadense L. Pima cotton is known for its resistance to Fusarium wilt and for producing fibers of superior quality highly prized in the textile market. We report a high-quality genome assembly and annotation of Pima-S6 cotton and its comparison at the chromosome and protein level to other ten Gossypium published genome assemblies. RESULTS: Synteny and orthogroup analyses revealed important differences on chromosome structure and annotated proteins content between our Pima-S6 and other publicly available G. barbadense assemblies, and across Gossypium assemblies in general. Detailed synteny analyses revealed chromosomal rearrangements between Pima-S6 and other Pima genomes on several chromosomes, with three major inversions in chromosomes A09, A13 and D05, raising questions about the true chromosome structure of Gossypium barbadense genomes. CONCLUSION: Analyses of the re-assembled and re-annotated genome of the close relative G. barbadense Pima 3-79 using our Pima-S6 assembly suggest that contig placement of some recent G. barbadense assemblies might have been unduly influenced by the use of the G. hirsutum TM-1 genome as the anchoring reference. The Pima-S6 reference genome provides a valuable genomic resource and offers new insights on genomic structure, and can serve as G. barbadense genome reference for future assemblies and further support FOV4-related studies and breeding efforts.


Assuntos
Gossypium , Iodeto de Potássio , Gossypium/genética , Mapeamento Cromossômico , Melhoramento Vegetal , Estruturas Cromossômicas , Genoma de Planta
9.
Front Genet ; 14: 1271200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259617

RESUMO

Introduction: Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 (FOV4) is a highly pathogenic soil-borne fungus responsible for Fusarium wilt in cotton (Gossypium spp.) and represents a continuing threat to cotton production in the southwest states of the United States, including California, New Mexico, and Texas. Pima (G. barbadense L.) cotton, which is highly valued for its fiber quality, has been shown to be more susceptible to this pathogen than Upland (G. hirsutum L.) cotton. Still, some Pima cultivars present resistance to FOV4 infection. Methods: To gain insights into the FOV4-resistance mechanism, we performed comparative transcriptional and metabolomic analyses between FOV4-susceptible and FOV4-resistant Pima cotton entries. FOV4-resistant Pima-S6 and FOV4-susceptible Pima S-7 and Pima 3-79 cotton plants were infected with FOV4 in the greenhouse, and the roots harvested 11 days post-infection for further analysis. Results: We found that an enhanced root phenylpropanoid metabolism in the resistant Pima-S6 cultivar determines FOV4-resistance. Gene-ontology enrichment of phenylpropanoid biosynthesis and metabolism categories correlated with the accumulation of secondary metabolites in Pima-S6 roots. Specifically, we found esculetin, a coumarin, an inhibitor of Fusarium's growth, accumulated in the roots of Pima-S6 even under non-infected conditions. Genes related to the phenylpropanoid biosynthesis and metabolism, including phenylalanine ammonia-lyase 2 (PAL2) and pleiotropic drug resistance 12 (PDR12) transporter, were found to be upregulated in Pima-S6 roots. Discussion: Our results highlight an essential role for the phenylpropanoid synthesis pathway in FOV4 resistance in Pima-S6 cotton. These genes represent attractive research prospects for FOV4-disease resistance and breeding approaches of other cotton cultivars of economic relevance.

10.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082155

RESUMO

Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH2O) g-1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.


Assuntos
Adaptação Fisiológica/genética , Poaceae/genética , Dessecação/métodos , Genômica/métodos , Folhas de Planta/genética , Proteínas de Plantas/genética , Água/metabolismo
11.
Arthritis Care Res (Hoboken) ; 74(12): 2033-2041, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197023

RESUMO

OBJECTIVE: Evidence for the utility of medications in settings lacking randomized trial data can come from studies of treatment persistence. The present study was undertaken to examine patterns of medication use in systemic lupus erythematosus (SLE) using data from a large multicenter longitudinal cohort. METHODS: Prospectively collected data from the Asia Pacific Lupus Collaboration cohort including disease activity (SLE Disease Activity Index 2000 [SLEDAI-2K]) and medication details, captured at every visit from 2013-2018, were used. Medications were categorized as glucocorticoids (GCs), antimalarials (AM), and immunosuppressants (IS). Cox regression analyses were performed to determine the time-to-discontinuation of medications, stratified by SLE disease activity. RESULTS: Data from 19,804 visits of 2,860 patients were analyzed. Eight medication categories were observed: no treatment; GC, AM, or IS only; GC plus AM; GC plus IS; AM plus IS; and GC plus AM plus IS (triple therapy). Triple therapy was the most frequent pattern (31.4% of visits); single agents were used in 21% of visits, and biologics in only 3%. Time-to-discontinuation analysis indicated that medication persistence varied widely, with the highest treatment persistence for AM and lowest for IS. Patients with a time-adjusted mean SLEDAI-2K score of ≥10 had lower discontinuation of GCs and higher discontinuation of IS. CONCLUSION: Most patients received combination treatment. GC persistence was high, while IS persistence was low. Patients with high disease activity received more medication combinations but had reduced IS persistence, consistent with limited utility. These data confirm unmet need for improved SLE treatments.


Assuntos
Antimaláricos , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Imunossupressores/efeitos adversos , Glucocorticoides/uso terapêutico , Antimaláricos/uso terapêutico , Estudos de Coortes , Índice de Gravidade de Doença
12.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815339

RESUMO

Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.


Assuntos
Citocininas/metabolismo , Estresse Salino/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiologia , Flavonoides/genética , Flavonoides/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Metabolômica/métodos , Salinidade , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética
13.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209960

RESUMO

Transcription factors are important regulators of gene expression. They can orchestrate the activation or repression of hundreds or thousands of genes and control diverse processes in a coordinated way. This work explores the effect of a master regulator of plant development, BOLITA (BOL), in plant metabolism, with a special focus on specialized metabolism. For this, we used an Arabidopsis thaliana line in which the transcription factor activity can be induced. Fingerprinting metabolomic analyses of whole plantlets were performed at different times after induction. After 96 h, all induced replicas clustered as a single group, in contrast with all controls which did not cluster. Metabolomic analyses of shoot and root tissues enabled the putative identification of differentially accumulated metabolites in each tissue. Finally, the analysis of global gene expression in induced vs. non-induced root samples, together with enrichment analyses, allowed the identification of enriched metabolic pathways among the differentially expressed genes and accumulated metabolites after the induction. We concluded that the induction of BOL activity can modify the Arabidopsis metabolome. Future work should investigate whether its action is direct or indirect, and the implications of the metabolic changes for development regulation and bioprospection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma , Fatores de Transcrição/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Transcriptoma
14.
ASAIO J ; 67(12): 1301-1311, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34261878

RESUMO

Improper left ventricular assist device (LVAD) inflow cannula (IC) positioning creates areas of stasis and low pulsatility that predispose thromboembolism, but may be mitigated with LVAD speed modulation. A mock loop study was performed to assess the sensitivity of left ventricle (LV) flow architecture to IC position and speed modulation during HeartMate3 support. System pressure, flow, and the time-resolved velocity field were measured within a transparent silicone LV for three IC angles and three IC insertion depths at matched levels of cardiac function and LVAD speed. Inflow cannula angulation towards the septum increased the resistance to LVAD flow as well as increasing the size and energy of the counter-clockwise (CCW) vortex. Apical velocity was reduced compared to IC angulation towards the mitral valve, but regional pulsatility was maintained across all angles and LVAD speeds. Increased IC protrusion decreased LVAD flow resistance, increasing velocity within the IC but reducing flow and pulsatility in the adjacent apical region. Increasing LVAD flow resistance improves aortic valve opening and strengthens the CCW vortex which directs inflow towards the septum, producing higher blood residence time and shear activation potential. Despite this impact on flow architecture, pulsatility reduction with increased LVAD speed was minimal with the HeartMate3 speed modulation feature.


Assuntos
Coração Auxiliar , Cânula , Ventrículos do Coração/cirurgia , Coração Auxiliar/efeitos adversos , Hemodinâmica , Modelos Cardiovasculares
15.
Mol Phylogenet Evol ; 164: 107272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34332035

RESUMO

Cyanobacteria are emerging as a potential source of novel, beneficial bioactive compounds. However, some cyanobacteria species can harm water quality and public health through the production of toxins. Therefore, surveying the occurrence and generating genomic resources of cyanobacteria producing harmful compounds could help develop the control methods necessary to manage their growth and limit the release contaminants into the water bodies. Here, we describe a novel strain, Pseudanabaena punensis isolated from the open ends of pipelines supplying freshwater. This isolate was characterized morphologically, biochemically and by whole-genome sequence analysis. We also provide genomic information for P. punensis to help understand and highlight the features unique to this isolate. Morphological and genetic (analysis using 16S rRNA and rbcL genes) data were used to assign this novel strain to phylogenetic and taxonomic groups. The isolate was identified as a filamentous and non-heterocystous cyanobacteria. Based on morphological and 16S rRNA phylogeny, this isolate shares characteristics with the Pseudanabaenaceae family, but remains distinct from well-characterized species suggesting its polyphyletic assemblage. The whole-genome sequence analysis suggests greater genomic and phenotypic plasticity. Genome-wide sequence and comparative genomic analyses, comparing against several closely related species, revealed diverse and important genes associated with synthesizing bioactive compounds, multi-drug resistance pathway, heavy metal resistance, and virulence factors. This isolate also produces several important fatty acids with potential industrial applications. The observations described in this study emphasize both industrial applications and risks associated with the freshwater contamination, and therefore genomic resources provided in this study offer an opportunity for further investigations.


Assuntos
Cianobactérias , Cianobactérias/genética , Água Doce/microbiologia , Genômica , Filogenia , RNA Ribossômico 16S/química
16.
BMC Plant Biol ; 21(1): 259, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090337

RESUMO

BACKGROUND: Nitrogen (N) and phosphorus (P) are macronutrients essential for crop growth and productivity. In cultivated fields, N and P levels are rarely sufficient, contributing to the gap between realized and potential production. Fertilizer application increases nutrient availability, but is not available to all farmers, nor are current rates of application sustainable or environmentally desirable. Transcriptomic studies of cereal crops have revealed dramatic responses to either low N or low P single stress treatments. In the field, however, levels of both N and P may be suboptimal. The interaction between N and P starvation responses remains to be fully characterized. RESULTS: We characterized growth and root and leaf transcriptomes of young maize plants under nutrient replete, low N, low P or combined low NP conditions. We identified 1555 genes to respond to our nutrient treatments, in one or both tissues. A large group of genes, including many classical P starvation response genes, were regulated antagonistically between low N and P conditions. An additional experiment over a range of N availability indicated that a mild reduction in N levels was sufficient to repress the low P induction of P starvation genes. Although expression of P transporter genes was repressed under low N or low NP, we confirmed earlier reports of P hyper accumulation under N limitation. CONCLUSIONS: Transcriptional responses to low N or P were distinct, with few genes responding in a similar way to the two single stress treatments. In combined NP stress, the low N response dominated, and the P starvation response was largely suppressed. A mild reduction in N availability was sufficient to repress the induction of P starvation associated genes. We conclude that activation of the transcriptional response to P starvation in maize is contingent on N availability.


Assuntos
Nitrogênio/farmacologia , Fósforo/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitrogênio/administração & dosagem , Fósforo/administração & dosagem , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Zea mays/metabolismo
17.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008845

RESUMO

Fungal infections remain a high-incidence worldwide health problem that is aggravated by limited therapeutic options and the emergence of drug-resistant strains. Cinnamic and benzoic acid amides have previously shown bioactivity against different species belonging to the Candida genus. Here, 20 cinnamic and benzoic acid amides were synthesized and tested for inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019. Five compounds inhibited the Candida strains tested, with compound 16 (MIC = 7.8 µg/mL) producing stronger antifungal activity than fluconazole (MIC = 16 µg/mL) against C. krusei ATCC 14243. It was also tested against eight Candida strains, including five clinical strains resistant to fluconazole, and showed an inhibitory effect against all strains tested (MIC = 85.3-341.3 µg/mL). The MIC value against C. krusei ATCC 6258 was 85.3 mcg/mL, while against C. krusei ATCC 14243, it was 10.9 times smaller. This strain had greater sensitivity to the antifungal action of compound 16. The inhibition of C. krusei ATCC 14243 and C. parapsilosis ATCC 22019 was also achieved by compounds 2, 9, 12, 14 and 15. Computational experiments combining target fishing, molecular docking and molecular dynamics simulations were performed to study the potential mechanism of action of compound 16 against C. krusei. From these, a multi-target mechanism of action is proposed for this compound that involves proteins related to critical cellular processes such as the redox balance, kinases-mediated signaling, protein folding and cell wall synthesis. The modeling results might guide future experiments focusing on the wet-lab investigation of the mechanism of action of this series of compounds, as well as on the optimization of their inhibitory potency.


Assuntos
Amidas/farmacologia , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Modelos Moleculares , Amidas/química , Anti-Infecciosos/farmacologia , Halogenação , Testes de Sensibilidade Microbiana , Termodinâmica
18.
Genomics ; 113(1 Pt 1): 88-103, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271330

RESUMO

Amaranth has been proposed as an exceptional alternative for food security and climate change mitigation. Information about the distribution, abundance, or specificity of miRNAs in amaranth species is scare. Here, small RNAs from seedlings under control, drought, heat, and cold stress conditions of the Amaranthus hypocondriacus variety "Gabriela" were sequenced and miRNA loci identified in the amaranth genome using the ShortStack software. Fifty-three genuine miRNA clustersthirty-nine belonging to conserved families, and fourteen novel, were identified. Identification of their target genes suggests that conserved amaranth miRNAs are involved in growth and developmental processes, as well as stress responses. MiR0005, an amaranth-specific miRNA, exhibited an unusual high level of expression, akin to that of conserved miRNAs. Overall, our results broaden our knowledge regarding the distribution, abundance and expression of miRNAs in amaranth, providing the basis for future research on miRNAs and their functions in this important species.


Assuntos
Amaranthus/genética , MicroRNAs/genética , Amaranthus/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Termotolerância
19.
Biomacromolecules ; 21(8): 3483-3484, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32709203

RESUMO

Sénéchal et al. presented a Comment to our article published in [ Biomacromolecules 2014, 15, 1194-1203] and entitled "N-terminal Protein Tail Acts as Aggregation Protective Entropic Bristles: The SUMO Case", and here we provide our reply.


Assuntos
Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina , Entropia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
20.
Microb Cell Fact ; 19(1): 69, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188455

RESUMO

BACKGROUND: Trichoderma species are among the most effective cell factories to produce recombinant proteins, whose productivity relies on the molecular toolkit and promoters available for the expression of the target protein. Although inducible promoter systems have been developed for producing recombinant proteins in Trichoderma, constitutive promoters are often a desirable alternative. Constitutive promoters are simple to use, do not require external stimuli or chemical inducers to be activated, and lead to purer enzyme preparations. Moreover, most of the promoters for homologous and heterologous expression reported in Trichoderma have been commonly evaluated by directly assessing production of industrial enzymes, requiring optimization of laborious protocols. RESULTS: Here we report the identification of Pccg6, a novel Trichoderma atroviride constitutive promoter, that has similar transcriptional strength as that of the commonly used pki1 promoter. Pccg6 displayed conserved arrangements of transcription factor binding sites between promoter sequences of Trichoderma ccg6 orthologues genes, potentially involved in their regulatory properties. The predicted ccg6-encoded protein potentially belongs to the SPE1/SPI1 protein family and shares high identity with CCG6 orthologue sequences from other fungal species including Trichoderma reesei, Trichoderma virens, Trichoderma asperellum, and to a lesser extent to that of Neurospora crassa. We also report the use of the Pccg6 promoter to drive the expression of PTXD, a phosphite oxidoreductase of bacterial origin, which allowed T. atroviride to utilize phosphite as a sole source of phosphorus. We propose ptxD as a growth reporter gene that allows real-time comparison of the functionality of different promoters by monitoring growth of Trichoderma transgenic lines and enzymatic activity of PTXD. Finally, we show that constitutive expression of ptxD provided T. atroviride a competitive advantage to outgrow bacterial contaminants when supplied with phosphite as a sole source of phosphorus. CONCLUSIONS: A new constitutive promoter, ccg6, for expression of homologous and heterologous proteins has been identified and tested in T. atroviride to express PTXD, which resulted in an effective and visible phenotype to evaluate transcriptional activity of sequence promoters. Use of PTXD as a growth marker holds great potential for assessing activity of other promoters and for biotechnological applications as a contamination control system.


Assuntos
Genes Fúngicos , Regiões Promotoras Genéticas , Trichoderma/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Oxirredutases/genética , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA