Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
EMBO Mol Med ; 16(9): 2080-2108, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39103698

RESUMO

Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.


Assuntos
Adenocarcinoma , Proteínas de Transporte , Neoplasias Colorretais , Fator 15 de Diferenciação de Crescimento , Oxaliplatina , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Proteínas de Transporte/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
Mol Cancer Ther ; 21(4): 667-676, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35086953

RESUMO

Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Inibidores de MTOR , Masculino , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glutamato Metabotrópico , Serina-Treonina Quinases TOR/metabolismo
3.
Front Mol Biosci ; 8: 661516, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568423

RESUMO

Tertiary lymphoid structures (TLSs) develop in non-lymphatic tissue in chronic inflammation and cancer. TLS can mature to lymph node (LN) like structures with germinal centers and associated vasculature. TLS neogenesis in cancer is highly varied and tissue dependent. The role of TLS in adaptive antitumor immunity is of great interest. However, data also show that TLS can play a role in cancer metastasis. The importance of lymphatics in cancer distant metastasis is clear yet the precise detail of how various immunosurveillance mechanisms interplay within TLS and/or draining LN is still under investigation. As part of the tumor lymphatics, TLS vasculature can provide alternative routes for the establishment of the pre-metastatic niche and cancer dissemination. The nature of the cytokine and chemokine signature at the heart of TLS induction can be key in determining the success of antitumor immunity or in promoting cancer invasiveness. Understanding the biochemical and biomechanical factors underlying TLS formation and the resulting impact on the primary tumor will be key in deciphering cancer metastasis and in the development of the next generation of cancer immunotherapeutics.

4.
Cell Rep ; 27(7): 1967-1978.e4, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091437

RESUMO

Lymphatic vasculature is crucial for metastasis in triple-negative breast cancer (TNBC); however, cellular and molecular drivers controlling lymphovascular metastasis are poorly understood. We define a macrophage-dependent signaling cascade that facilitates metastasis through lymphovascular remodeling. TNBC cells instigate mRNA changes in macrophages, resulting in ß4 integrin-dependent adhesion to the lymphovasculature. ß4 integrin retains macrophages proximal to lymphatic endothelial cells (LECs), where release of TGF-ß1 drives LEC contraction via RhoA activation. Macrophages promote gross architectural changes to lymphovasculature by increasing dilation, hyperpermeability, and disorganization. TGF-ß1 drives ß4 integrin clustering at the macrophage plasma membrane, further promoting macrophage adhesion and demonstrating the dual functionality of TGF-ß1 signaling in this context. ß4 integrin-expressing macrophages were identified in human breast tumors, and a combination of vascular-remodeling macrophage gene signature and TGF-ß signaling scores correlates with metastasis. We postulate that future clinical strategies for patients with TNBC should target crosstalk between ß4 integrin and TGF-ß1.


Assuntos
Integrina beta4/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/patologia , Macrófagos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Integrina beta4/genética , Metástase Linfática , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Calinina
5.
Cell Rep ; 24(3): 630-641, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021161

RESUMO

The immunosuppressive transmembrane protein PD-L1 was shown to traffic via the multivesicular body (MVB) and to be released on exosomes. A high-content siRNA screen identified the endosomal sorting complexes required for transport (ESCRT)-associated protein ALIX as a regulator of both EGFR activity and PD-L1 surface presentation in basal-like breast cancer (BLBC) cells. ALIX depletion results in prolonged and enhanced stimulation-induced EGFR activity as well as defective PD-L1 trafficking through the MVB, reduced exosomal secretion, and its redistribution to the cell surface. Increased surface PD-L1 expression confers an EGFR-dependent immunosuppressive phenotype on ALIX-depleted cells. An inverse association between ALIX and PD-L1 expression was observed in human breast cancer tissues, while an immunocompetent mouse model of breast cancer revealed that ALIX-deficient tumors are larger and show an increased immunosuppressive environment. Our data suggest that ALIX modulates immunosuppression through regulation of PD-L1 and EGFR and may, therefore, present a diagnostic and therapeutic target for BLBC.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Terapia de Imunossupressão , Animais , Técnicas Biossensoriais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Microambiente Celular , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos Endogâmicos BALB C
6.
Cancer Res ; 77(5): 1083-1096, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082403

RESUMO

Cancer cells tend to metastasize first to tumor-draining lymph nodes, but the mechanisms mediating cancer cell invasion into the lymphatic vasculature remain little understood. Here, we show that in the human breast tumor microenvironment (TME), the presence of increased numbers of RORγt+ group 3 innate lymphoid cells (ILC3) correlates with an increased likelihood of lymph node metastasis. In a preclinical mouse model of breast cancer, CCL21-mediated recruitment of ILC3 to tumors stimulated the production of the CXCL13 by TME stromal cells, which in turn promoted ILC3-stromal interactions and production of the cancer cell motile factor RANKL. Depleting ILC3 or neutralizing CCL21, CXCL13, or RANKL was sufficient to decrease lymph node metastasis. Our findings establish a role for RORγt+ILC3 in promoting lymphatic metastasis by modulating the local chemokine milieu of cancer cells in the TME. Cancer Res; 77(5); 1083-96. ©2017 AACR.


Assuntos
Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos/imunologia , Linfócitos/patologia , Receptores Nucleares Órfãos/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CCL21/imunologia , Quimiocina CXCL13/imunologia , Feminino , Humanos , Imunidade Inata , Metástase Linfática , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
7.
J Nucl Med ; 57(5): 765-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26635342

RESUMO

UNLABELLED: Locoregional recurrence of breast cancer poses significant clinical problems because of frequent inoperability once the chest wall is involved. Early detection of recurrence by molecular imaging agents against therapeutically targetable receptors, such as c-Met, would be of potential benefit. The aim of this study was to assess (18)F-AH113804, a peptide-based molecular imaging agent with high affinity for human c-Met, for the detection of early-stage locoregional recurrence in a human basal-like breast cancer model, HCC1954. METHODS: HCC1954 tumor-bearing xenograft models were established, and (18)F-AH113804 was administered. Distribution of radioactivity was determined via PET at 60 min after radiotracer injection. PET and CT images were acquired 10 d after tumor inoculation, to establish baseline distribution and uptake, and then on selected days after surgical tumor resection. CT images and caliper were used to determine the tumor volume. Radiotracer uptake was assessed by (18)F-AH113804 PET imaging. c-Met expression was assessed by immunofluorescence imaging of tumor samples and correlated with (18)F-AH113804 PET imaging results. RESULTS: Baseline uptake of (18)F-AH113804, determined in tumor-bearing animals after 10 d, was approximately 2-fold higher in the tumor than in muscle tissue or the contralateral mammary fat pad. The tumor growth rate, determined from CT images, was comparable between the animals with recurrent tumors, with detection of tumors of low volume (<10 mm(3)) only possible by day 20 after tumor resection. (18)F-AH113804 PET detected local tumor recurrence as early as 6 d after surgery in the recurrent tumor-bearing animals and exhibited significantly higher (18)F-AH113804 uptake (in comparison to mammary fatty tissue), with a target-to-background (muscle) ratio of approximately 3:1 (P < 0.01). The c-Met expression of individual resected tumor samples, determined by immunofluorescence, correlated with the respective (18)F-AH113804 imaging signals (r = 0.82, P < 0.05). CONCLUSION: (18)F-AH113804 PET provides a new diagnostic tool for the detection of c-Met-expressing primary tumor and has potential utility for the detection of locoregional recurrence from an early stage.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Estadiamento de Neoplasias , Tomografia Computadorizada por Raios X
8.
Biomed Opt Express ; 6(2): 277-96, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25780724

RESUMO

We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction.

9.
J Cell Sci ; 128(2): 251-65, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25413351

RESUMO

Podosomes are integrin-containing adhesion structures commonly found in migrating leukocytes of the monocytic lineage. The actin cytoskeletal organisation of podosomes is based on a WASP- and Arp2/3-mediated mechanism. WASP also associates with a second protein, WIP (also known as WIPF1), and they co-localise in podosome cores. Here, we report for the first time that WIP can be phosphorylated on tyrosine residues and that tyrosine phosphorylation of WIP is a trigger for release of WASP from the WIP-WASP complex. Using a knockdown approach together with expression of WIP phosphomimics, we show that in the absence of WIP-WASP binding, cellular WASP is rapidly degraded, leading to disruption of podosomes and a failure of cells to degrade an underlying matrix. In the absence of tyrosine phosphorylation, the WIP-WASP complex remains intact and podosome lifetimes are extended. A screen of candidate kinases and inhibitor-based assays identified Bruton's tyrosine kinase (Btk) as a regulator of WIP tyrosine phosphorylation. We conclude that tyrosine phosphorylation of WIP is a crucial regulator of WASP stability and function as an actin-nucleation-promoting factor.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Proteínas do Citoesqueleto/genética , Matriz Extracelular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Fosforilação/genética , Podossomos/metabolismo , Ligação Proteica , Proteínas Tirosina Quinases/genética , Tirosina/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/genética
10.
PLoS One ; 9(10): e110695, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360776

RESUMO

We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.


Assuntos
Membrana Celular/metabolismo , Polarização de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Molecular/métodos , Técnicas Biossensoriais , Humanos , Células MCF-7 , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
11.
Sci Signal ; 7(339): ra78, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25140053

RESUMO

The epidermal growth factor receptor (EGFR) is a member of the ErbB family that can promote the migration and proliferation of breast cancer cells. Therapies that target EGFR can promote the dimerization of EGFR with other ErbB receptors, which is associated with the development of drug resistance. Understanding how interactions among ErbB receptors alter EGFR biology could provide avenues for improving cancer therapy. We found that EGFR interacted directly with the CYT1 and CYT2 variants of ErbB4 and the membrane-anchored intracellular domain (mICD). The CYT2 variant, but not the CYT1 variant, protected EGFR from ligand-induced degradation by competing with EGFR for binding to a complex containing the E3 ubiquitin ligase c-Cbl and the adaptor Grb2. Cultured breast cancer cells overexpressing both EGFR and ErbB4 CYT2 mICD exhibited increased migration. With molecular modeling, we identified residues involved in stabilizing the EGFR dimer. Mutation of these residues in the dimer interface destabilized the complex in cells and abrogated growth factor-stimulated cell migration. An exon array analysis of 155 breast tumors revealed that the relative mRNA abundance of the ErbB4 CYT2 variant was increased in ER+ HER2- breast cancer patients, suggesting that our findings could be clinically relevant. We propose a mechanism whereby competition for binding to c-Cbl in an ErbB signaling heterodimer promotes migration in response to a growth factor gradient.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Receptores ErbB/metabolismo , Proteólise , Receptor ErbB-4/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Feminino , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Estrutura Terciária de Proteína , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Receptor ErbB-4/genética
12.
PLoS One ; 9(2): e88251, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24523880

RESUMO

Podosomes are highly dynamic actin-rich adhesive structures formed predominantly by cells of the monocytic lineage, which degrade the extracellular matrix. They consist of a core of F-actin and actin-regulating proteins, surrounded by a ring of adhesion-associated proteins such as vinculin. We have characterised the structure of podosomes in macrophages, particularly the structure of the ring, using three super-resolution fluorescence microscopy techniques: stimulated emission depletion microscopy, structured illumination microscopy and localisation microscopy. Rather than being round, as previously assumed, we found the vinculin ring to be created from relatively straight strands of vinculin, resulting in a distinctly polygonal shape. The strands bind preferentially at angles between 116° and 135°. Furthermore, adjacent vinculin strands are observed nucleating at the corners of the podosomes, suggesting a mechanism for podosome growth.


Assuntos
Macrófagos/citologia , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , Microscopia/métodos , Vinculina/química , Citoesqueleto de Actina , Actinas/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Talina/química
13.
Blood ; 121(13): 2542-52, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23305739

RESUMO

Megakaryocytes give rise to platelets via extension of proplatelet arms, which are released through the vascular sinusoids into the bloodstream. Megakaryocytes and their precursors undergo varying interactions with the extracellular environment in the bone marrow during their maturation and positioning in the vascular niche. We demonstrate that podosomes are abundant in primary murine megakaryocytes adherent on multiple extracellular matrix substrates, including native basement membrane. Megakaryocyte podosome lifetime and density, but not podosome size, are dependent on the type of matrix, with podosome lifetime dramatically increased on collagen fibers compared with fibrinogen. Podosome stability and dynamics depend on actin cytoskeletal dynamics but not matrix metalloproteases. However, podosomes degrade matrix and appear to be important for megakaryocytes to extend protrusions across a native basement membrane. We thus demonstrate for the first time a fundamental requirement for podosomes in megakaryocyte process extension across a basement membrane, and our results suggest that podosomes may have a role in proplatelet arm extension or penetration of basement membrane.


Assuntos
Membrana Basal/fisiologia , Extensões da Superfície Celular/fisiologia , Matriz Extracelular/metabolismo , Megacariócitos/fisiologia , Animais , Membrana Basal/metabolismo , Plaquetas/metabolismo , Plaquetas/fisiologia , Extensões da Superfície Celular/metabolismo , Células Cultivadas , Fibrinogênio/metabolismo , Células HEK293 , Humanos , Recém-Nascido , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/metabolismo
14.
Haematologica ; 97(5): 687-91, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22133775

RESUMO

Podosomes are actin-based adhesions involved in migration of cells that have to cross tissue boundaries such as myeloid cells. The Wiskott Aldrich Syndrome Protein regulates de novo actin polymerization during podosome formation and it is cleaved by the protease calpain during podosome disassembly. The mechanisms that may induce the Wiskott Aldrich Syndrome Protein cleavage by calpain remain undetermined. We now report that in myeloid cells, tyrosine phosphorylation of the Wiskott Aldrich Syndrome Protein-tyrosine291 (Human)/tyrosine293 (mouse) not only enhances Wiskott Aldrich Syndrome Protein-mediated actin polymerization but also promotes its calpain-dependent degradation during podosome disassembly. We also show that activation of the Wiskott Aldrich Syndrome Protein leading to podosome formation occurs independently of tyrosine phosphorylation in spleen-derived dendritic cells. We conclude that tyrosine phosphorylation of the Wiskott Aldrich Syndrome Protein integrates dynamics of actin and cell adhesion proteins during podosome disassembly required for mobilization of myeloid cells during the immune response.


Assuntos
Citoesqueleto de Actina/fisiologia , Calpaína/metabolismo , Estruturas da Membrana Celular/metabolismo , Tirosina/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/fisiologia , Animais , Adesão Celular , Movimento Celular , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Imunofluorescência , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Células Mieloides/metabolismo , Fosforilação , Ligação Proteica
15.
Sci Signal ; 4(201): ra81, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22126964

RESUMO

Natural killer (NK) cells kill tumor cells and virally infected cells, and an effective NK cell response requires processes, such as motility, recognition, and directional secretion, that rely on cytoskeletal rearrangement. The Rho guanosine triphosphatase (GTPase) Cdc42 coordinates cytoskeletal reorganization downstream of many receptors. The Rho-related GTPase from plants 1 (ROP1) exhibits oscillatory activation behavior at the apical plasma membrane of growing pollen tubes; however, a similar oscillation in Rho GTPase activity has so far not been demonstrated in mammalian cells. We hypothesized that oscillations in Cdc42 activity might occur within NK cells as they interact with target cells. Through fluorescence lifetime imaging of a Cdc42 biosensor, we observed that in live NK cells forming immunological synapses with target cells, Cdc42 activity oscillated after exhibiting an initial increase. We used protein-protein interaction networks and structural databases to identify candidate proteins that controlled Cdc42 activity, leading to the design of a targeted short interfering RNA screen. The guanine nucleotide exchange factors RhoGEF6 and RhoGEF7 were necessary for Cdc42 activation within the NK cell immunological synapse. In addition, the kinase Akt and the p85α subunit of phosphoinositide 3-kinase (PI3K) were required for Cdc42 activation, the periodicity of the oscillation in Cdc42 activity, and the subsequent polarization of cytotoxic vesicles toward target cells. Given that PI3Ks are targets of tumor therapies, our findings suggest the need to monitor innate immune function during the course of targeted therapy against these enzymes.


Assuntos
Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , RNA Interferente Pequeno , Proteína cdc42 de Ligação ao GTP/imunologia , Relógios Biológicos/genética , Relógios Biológicos/imunologia , Linhagem Celular Transformada , Terapia Baseada em Transplante de Células e Tecidos/métodos , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Citoesqueleto/genética , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Imunidade Celular/genética , Imunidade Inata/genética , Sinapses Imunológicas/enzimologia , Sinapses Imunológicas/genética , Células Matadoras Naturais/enzimologia , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-akt , Fatores de Troca de Nucleotídeo Guanina Rho , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Nat Methods ; 9(2): 195-200, 2011 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-22138825

RESUMO

We describe a localization microscopy analysis method that is able to extract results in live cells using standard fluorescent proteins and xenon arc lamp illumination. Our Bayesian analysis of the blinking and bleaching (3B analysis) method models the entire dataset simultaneously as being generated by a number of fluorophores that may or may not be emitting light at any given time. The resulting technique allows many overlapping fluorophores in each frame and unifies the analysis of the localization from blinking and bleaching events. By modeling the entire dataset, we were able to use each reappearance of a fluorophore to improve the localization accuracy. The high performance of this technique allowed us to reveal the nanoscale dynamics of podosome formation and dissociation throughout an entire cell with a resolution of 50 nm on a 4-s timescale.


Assuntos
Teorema de Bayes , Nanotecnologia , Linhagem Celular Tumoral , Humanos
17.
EMBO J ; 30(9): 1705-18, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21427700

RESUMO

Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that ß1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that ß1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott­Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of ß1 integrin within newly assembled actin-rich membrane ruffles. Active ß1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of ß1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.


Assuntos
Quimiotaxia/fisiologia , Fibroblastos/fisiologia , Integrina beta1/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Becaplermina , Western Blotting , Endocitose , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Técnicas de Inativação de Genes , Imunoprecipitação , Lentivirus , Camundongos , Células NIH 3T3 , Oligonucleotídeos/genética , Plasmídeos/genética , Fator de Crescimento Derivado de Plaquetas , Proteínas Proto-Oncogênicas c-sis
18.
Eur J Cell Biol ; 90(2-3): 213-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20952093

RESUMO

In immature dendritic cells (DCs) podosomes form and turn over behind the leading edge of migrating cells. The Arp2/3 complex activator Wiskott-Aldrich Syndrome Protein (WASP) localises to the actin core of forming podosomes together with WASP-Interacting Protein (WIP). A second weaker Arp2/3 activator, cortactin, is also found at podosomes where it has been proposed to participate in matrix metalloproteinase (MMP) secretion. We have previously shown that WIP(-/-) DCs are unable to make podosomes. WIP binds to cortactin and in this report we address whether WIP regulates cortactin-mediated MMP activity. Using DCs derived from splenic murine precursors, we found that wild-type cells were able to localise MMPs at podosomes where matrix degradation takes place. In contrast, WIP(-/-) DCs remain able to synthesise MMPs but do not degrade the extracellular matrix. Infection of WIP KO DCs with lentivirus expressing WIP restored both podosome formation and their ability to degrade the extracellular matrix, implicating WIP-induced podosomes as foci of functional MMP location. When WIP KO DCs were infected with a mutant form of WIP lacking the cortactin-binding domain (WIPΔ110-170) DCs were only able to elaborate disorganised podosomes that were unable to support MMP-mediated matrix degradation. Taken together, these results suggest a role for WIP not only in WASP-mediated actin polymerisation and podosome formation, but also in cortactin-mediated extracellular matrix degradation by MMPs.


Assuntos
Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/metabolismo , Cortactina/metabolismo , Células Dendríticas/metabolismo , Matriz Extracelular/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto , Células Dendríticas/enzimologia , Precursores Enzimáticos/metabolismo , Fibronectinas/metabolismo , Gelatinases/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Estrutura Terciária de Proteína
19.
Eur J Cell Biol ; 90(2-3): 198-204, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20609498

RESUMO

The integrin-dependent migration of myeloid cells requires tight coordination between actin-based cell membrane protrusion and integrin-mediated adhesion to form a stable leading edge. Under this mode of migration, polarised myeloid cells including dendritic cells, macrophages and osteoclasts develop podosomes that sustain the extending leading edge. Podosome integrity and dynamics vary in response to changes in the physical and biochemical properties of the cell environment. In the current article we discuss the role of various factors in initiation and stability of podosomes and the roles of the Wiskott Aldrich Syndrome Protein (WASP) in this process. We discuss recent data indicating that in a cellular context WASP is crucial not only for localised actin polymerisation at the leading edge and in podosome cores but also for coordination of integrin clustering and activation during podosome formation and disassembly.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/fisiologia , Células Mieloides/citologia , Proteína da Síndrome de Wiskott-Aldrich/fisiologia , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Humanos , Camundongos
20.
Mol Cell Biol ; 29(10): 2730-47, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19273601

RESUMO

Cdc42 and Rac family GTPases are important regulators of morphology, motility, and polarity in a variety of mammalian cell types. However, comprehensive analysis of their roles in the morphological and behavioral aspects of chemotaxis within a single experimental system is still lacking. Here we demonstrate using a direct viewing chemotaxis assay that of all of the Cdc42/Rac1-related GTPases expressed in primary fibroblasts, Cdc42, Rac1, and RhoG are required for efficient migration towards platelet-derived growth factor (PDGF). During migration, Cdc42-, Rac1-, and RhoG-deficient cells show aberrant morphology characterized as cell elongation and cell body rounding, loss of lamellipodia, and formation of thick membrane extensions, respectively. Analysis of individual cell trajectories reveals that cell speed is significantly reduced, as well as persistence, but to a smaller degree, while the directional response to the gradient of PDGF is not affected. Combined knockdown of Cdc42, Rac1, and RhoG results in greater inhibition of cell speed than when each protein is knocked down alone, but the cells are still capable of migrating toward PDGF. We conclude that, Cdc42, Rac1, and RhoG function cooperatively during cell migration and that, while each GTPase is implicated in the control of morphology and cell speed, these and other Cdc42/Rac-related GTPases are not essential for the directional response toward PDGF.


Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Fibroblastos/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Becaplermina , Bioensaio/instrumentação , Bioensaio/métodos , Forma Celular , Células Cultivadas , Fibroblastos/citologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-sis , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA