Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Dev Biol ; 340(2): 408-18, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20122915

RESUMO

Fragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear. We have previously demonstrated that Drosophila FMRP (dFMRP) is required in early embryos for cleavage furrow formation. In an effort to identify new targets of dFMRP-dependent regulation and new effectors of cleavage furrow formation, we used two-dimensional difference gel electrophoresis and mass spectrometry to identify proteins that are misexpressed in dfmr1 mutant embryos. Of the 28 proteins identified, we have identified three subunits of the Chaperonin containing TCP-1 (CCT) complex as new direct targets of dFMRP-dependent regulation. Furthermore, we found that the septin Peanut, a known effector of cleavage, is a likely conserved substrate of fly CCT and is mislocalized in both cct and in dfmr1 mutant embryos. Based on these results we propose that dFMRP-dependent regulation of CCT subunits is required for cleavage furrow formation and that at least one of its substrates is affected in dfmr1- embryos suggesting that dFMRP-dependent regulation of CCT contributes to the cleavage furrow formation phenotype.


Assuntos
Chaperonina com TCP-1/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Blástula/embriologia , Chaperonina com TCP-1/química , Chaperonina com TCP-1/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Eletroforese em Gel Bidimensional , Embrião não Mamífero/metabolismo , Imunofluorescência , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Biomed Microdevices ; 9(5): 681-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17508286

RESUMO

A method for assembling Drosophila embryos in a microfluidic device was developed for studies of thermal perturbation of early embryonic development. Environmental perturbation is a complimentary method to injection of membrane-impermeable macromolecules for assaying genetic function and investigating robustness in complex biochemical networks. The development of a high throughput method for perturbing embryos would facilitate the isolation and mapping of signaling pathways. We immobilize Drosophila embryos inside a microfluidic device on minimal potential-energy wells created through surface modification, and thermally perturb these embryos using binary laminar flows of warm and cold solutions. We self-assemble embryos onto oil adhesive pads with an alcohol surfactant carrier fluid (detachment: 0.1 mL/min), and when the surfactant is removed, the embryo-oil adhesion increases to approximately 25 mL/min flow rates, which allows for high velocities required for sharp gradients of thermal binary flows. The microfluidic thermal profile was numerically characterized by simulation and experimentally characterized by fluorescence thermometry. The effects of thermal perturbation were observed to induce abnormal morphogenetic movements in live embryos by using time-lapse differential interference contrast (DIC) microscopy.


Assuntos
Drosophila/embriologia , Técnicas Analíticas Microfluídicas/métodos , Morfogênese , Animais , Calibragem , Simulação por Computador , Dimetilpolisiloxanos/química , Drosophila/citologia , Embrião não Mamífero , Desenho de Equipamento , Etanol/química , Metanol/química , Técnicas Analíticas Microfluídicas/instrumentação , Óleos/química , Polímeros/química , Tensão Superficial , Temperatura , Água/química
3.
Proc Natl Acad Sci U S A ; 103(48): 18160-5, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17110444

RESUMO

During the cleavage stage of animal embryogenesis, cell numbers increase dramatically without growth, and a shift from maternal to zygotic genetic control occurs called the midblastula transition. Although these processes are fundamental to animal development, the molecular mechanisms controlling them are poorly understood. Here, we demonstrate that Drosophila fragile X mental retardation protein (dFMRP) is required for cleavage furrow formation and functions within dynamic cytoplasmic ribonucleoprotein (RNP) bodies during the midblastula transition. dFMRP is observed to colocalize with the cytoplasmic RNP body components Maternal expression at 31B (ME31B) and Trailer Hitch (TRAL) in a punctate pattern throughout the cytoplasm of cleavage-stage embryos. Complementary biochemistry demonstrates that dFMRP does not associate with polyribosomes, consistent with their reported exclusion from many cytoplasmic RNP bodies. By using a conditional mutation in small bristles (sbr), which encodes an mRNA nuclear export factor, to disrupt the normal cytoplasmic accumulation of zygotic transcripts at the midblastula transition, we observe the formation of giant dFMRP/TRAL-associated structures, suggesting that dFMRP and TRAL dynamically regulate RNA metabolism at the midblastula transition. Furthermore, we show that dFMRP associates with endogenous tral mRNA and is required for normal TRAL protein expression and localization, revealing it as a previously undescribed target of dFMRP control. We also show genetically that tral itself is required for cleavage furrow formation. Together, these data suggest that in cleavage-stage Drosophila embryos, dFMRP affects protein expression by controlling the availability and/or competency of specific transcripts to be translated.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Mães , Ligação Proteica , RNA Mensageiro/genética , Ribonucleoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA