Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ultrasound Med Biol ; 49(7): 1679-1685, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120330

RESUMO

OBJECTIVE: Efficient, sustained and long-term delivery of therapeutics to the brain remains an important challenge to treatment of diseases such as brain cancer, stroke and neurodegenerative disease. Focused ultrasound can assist movement of drugs into the brain, but frequent and long-term use has remained impractical. Single-use intracranial drug-eluting depots show promise but are limited for the treatment of chronic diseases as they cannot be refilled non-invasively. Refillable drug-eluting depots could serve as a long-term solution, but refilling is hindered by the blood-brain barrier (BBB), which prevents drug refills from accessing the brain. In this article, we describe how focused ultrasound enables non-invasive loading of intracranial drug depots in mice. METHODS: Female CD-1 mice (n = 6) were intracranially injected with click-reactive and fluorescent molecules that are capable of anchoring in the brain. After healing, animals were treated with high-intensity focused ultrasound and microbubbles to temporarily increase the permeability of the blood-brain barrier and deliver dibenzocyclooctyne (DBCO)-Cy7. The mice were perfused, and the brains were imaged via ex vivo fluorescence imaging. RESULTS: Fluorescence imaging indicated small molecule refills are captured by intracranial depots as long as 4 wk after administration and are retained for up to 4 wk based on fluorescence imaging. Efficient loading was dependent on both focused ultrasound and the presence of refillable depots in the brain as absence of either prevented intracranial loading. CONCLUSION: The ability to target and retain small molecules at predetermined intracranial sites with pinpoint accuracy provides opportunities to continuously deliver drugs to the brain over weeks and months without excessive BBB opening and with minimal off-target side effects.


Assuntos
Barreira Hematoencefálica , Doenças Neurodegenerativas , Feminino , Camundongos , Animais , Sistemas de Liberação de Medicamentos/métodos , Encéfalo/diagnóstico por imagem , Microbolhas , Imageamento por Ressonância Magnética/métodos
2.
Mol Pharm ; 18(10): 3920-3925, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34494844

RESUMO

Stimuli-responsive, on-demand release of drugs from drug-eluting depots could transform the treatment of many local diseases, providing intricate control over local dosing. However, conventional on-demand drug release approaches rely on locally implanted drug depots, which become spent over time and cannot be refilled or reused without invasive procedures. New strategies to noninvasively refill drug-eluting depots followed by on-demand release could transform clinical therapy. Here we report an on-demand drug delivery paradigm that combines bioorthogonal click chemistry to locally enrich protodrugs at a prelabeled site and light-triggered drug release at the target tissue. This approach begins with introduction of the targetable depot through local injection of chemically reactive azide groups that anchor to the extracellular matrix. The anchored azide groups then capture blood-circulating protodrugs through bioorthogonal click chemistry. After local capture and retention, active drugs can be released through external light irradiation. In this report, a photoresponsive protodrug was constructed consisting of the chemotherapeutic doxorubicin (Dox), conjugated to dibenzocyclooctyne (DBCO) through a photocleavable ortho-nitrobenzyl linker. The protodrug exhibited excellent on-demand light-triggered Dox release properties and light-mediated in vitro cytotoxicity in U87 glioblastoma cell lines. Furthermore, in a live animal setting, azide depots formed in mice through intradermal injection of activated azide-NHS esters. After i.v. administration, the protodrug was captured by the azide depots with intricate local specificity, which could be increased with multiple refills. Finally, doxorubicin could be released from the depot upon light irradiation. Multiple rounds of depot refilling and light-mediated release of active drug were accomplished, indicating that this system has the potential for multiple rounds of treatment. Taken together, these in vitro and in vivo proof of concept studies establish a novel method for in vivo targeting and on-demand delivery of cytotoxic drugs at target tissues.


Assuntos
Química Click/métodos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Corantes Fluorescentes , Humanos , Camundongos
3.
Bioconjug Chem ; 31(10): 2288-2292, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32960584

RESUMO

Bioorthogonal click reactions yielding stable and irreversible adducts are in high demand for in vivo applications, including in biomolecular labeling, diagnostic imaging, and drug delivery. Previously, we reported a novel bioorthogonal "click" reaction based on the coupling of ortho-acetyl arylboronates and thiosemicarbazide-functionalized nopoldiol. We now report that a detailed structural analysis of the arylboronate/nopoldiol adduct by X-ray crystallography and 11B NMR reveals that the bioorthogonal reactants form, unexpectedly, a tetracyclic adduct through the cyclization of the distal nitrogen into the semithiocarbazone leading to a strong B-N dative bond and two new 5-membered rings. The cyclization adduct, which protects the boronate unit against hydrolytic breakdown, sheds light on the irreversible nature of this polycondensation. The potential of this reaction to work in a live animal setting was studied through in vivo capture of fluorescently labeled molecules in vivo. Arylboronates were introduced into tissues through intradermal injection of their activated NHS esters, which react with amines in the extracellular matrix. Fluorescently labeled nopoldiol molecules were administered systemically and were efficiently captured by the arylboronic acids in a location-specific manner. Taken together, these in vivo proof-of-concept studies establish arylboronate/nopoldiol bioorthogonal chemistry as a candidate for wide array of applications in chemical biology and drug delivery.


Assuntos
Ácidos Borônicos/química , Semicarbazidas/química , Animais , Ácidos Borônicos/síntese química , Química Click/métodos , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Semicarbazidas/síntese química
4.
Acta Biomater ; 112: 112-121, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32497743

RESUMO

Injectable alginate hydrogels have demonstrated utility in tissue engineering and drug delivery applications due in part to their mild gelation conditions, low host responses and chemical versatility. Recently, the potential of these gels has expanded with the introduction of refillable hydrogel depots - alginate gels chemically decorated with click chemistry groups to efficiently capture prodrug refills from the blood. Unfortunately, high degrees of click group substitution on alginate lead to poor viscoelastic properties and loss of ionic cross-linking. In this work, we introduce tetrabicyclononyne (tBCN) agents that covalently cross-link azide-modified alginate hydrogels for tissue engineering and drug delivery application in vivo. Adjusting cross-linker concentration allowed tuning the hydrogel mechanical properties for tissue-specific mechanical strength. The bioorthogonal and specific click reaction creates stable hydrogels with improved in vivo properties, including improved retention at injected sites. Azide-alginate hydrogels cross-linked with tBCN elicited minimal inflammation and maintained structural integrity over several months and efficiently captured therapeutics drug surrogates from the circulation. Taken together, azide-alginate hydrogels cross-linked with tBCN convey the benefits of alginate hydrogels for use in tissue engineering and drug delivery applications of refillable drug delivery depots. STATEMENT OF SIGNIFICANCE: Ionically cross-linked, injectable alginate biomaterials hold promise in many different clinical settings. However, adding new chemical functionality to alginate can disrupt their ionic cross-linking, limiting their utility. We have developed a "click" cross-linking strategy to improve the mechanical properties and tissue function of modified alginate biomaterials and enable them to capture small molecule drugs from the blood. We show that click cross-linked materials remain in place better than ionically cross-linked materials and efficiently capture payloads from the blood. Development of click cross-linking for refillable depots represents a crucial step toward clinical application of this promising drug delivery platform.


Assuntos
Alginatos , Hidrogéis , Materiais Biocompatíveis , Química Click , Reagentes de Ligações Cruzadas , Engenharia Tecidual
5.
Mol Pharm ; 17(2): 392-403, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829613

RESUMO

Local presentation of cancer drugs by injectable drug-eluting depots reduces systemic side effects and improves efficacy. However, local depots deplete their drug stores and are difficult to introduce into stiff tissues, or organs, such as the brain, that cannot accommodate increased pressure. We present a method for introducing targetable depots through injection of activated ester molecules into target tissues that react with and anchor themselves to the local extracellular matrix (ECM) and subsequently capture systemically administered small molecules through bioorthogonal click chemistry. A computational model of tissue-anchoring depot formation and distribution was verified by histological analysis and confocal imaging of cleared tissues. ECM-anchored click groups do not elicit any noticeable local or systemic toxicity or immune response and specifically capture systemically circulating molecules at intradermal, intratumoral, and intracranial sites for multiple months. Taken together, ECM anchoring of click chemistry motifs is a promising approach to specific targeting of both small and large therapeutics, enabling repeated local presentation for cancer therapy and other diseases.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Química Click/métodos , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Simulação por Computador , Modelos Animais de Doenças , Ésteres/administração & dosagem , Ésteres/química , Ésteres/farmacocinética , Feminino , Hidrogéis/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Succinimidas , Distribuição Tecidual
6.
Biomaterials ; 178: 373-382, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29779862

RESUMO

Local drug presentation made possible by drug-eluting depots has demonstrated benefits in a vast array of diseases, including in cancer, microbial infection and in wound healing. However, locally-eluting depots are single-use systems that cannot be refilled or reused after implantation at inaccessible sites, limiting their clinical utility. New strategies to noninvasively refill drug-eluting depots could dramatically enhance their clinical use. In this report we present a refillable hydrogel depot system based on bioorthogonal click chemistry. The click-modified hydrogel depots capture prodrug refills from the blood and subsequently release active drugs locally in a sustained manner. Capture of the systemically-administered refills serves as an efficient and non-toxic method to repeatedly refill depots. Refillable depots in combination with prodrug refills achieve sustained release at precancerous tumor sites to improve cancer therapy while eliminating systemic side effects. The ability to target tissues without enhanced permeability could allow the use of refillable depots in cancer and many other medical applications.


Assuntos
Antineoplásicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias/cirurgia , Alginatos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Química Click , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Hidrogéis/química , Cinética , Camundongos , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/toxicidade , Tela Subcutânea/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA