Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurosci Lett ; 739: 135443, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33141067

RESUMO

Parkinson's Disease (PD) patients undergoing subthalamic nucleus deep brain stimulation (STN-DBS) therapy can reduce levodopa equivalent daily dose (LEDD) by approximately 50 %, leading to less symptoms of dyskinesia. The underlying mechanisms contributing to this reduction remain unclear, but studies posit that STN-DBS may increase striatal dopamine levels by exciting remaining dopaminergic cells in the substantia nigra pars compacta (SNc). Yet, no direct evidence has shown how SNc neuronal activity responds during STN-DBS in PD. Here, we use a hemiparkinsonian rat model of PD and employ in vivo electrophysiology to examine the effects of STN-DBS on SNc neuronal spiking activity. We found that 43 % of SNc neurons in naïve rats reduced their spiking frequency to 29.8 ± 18.5 % of baseline (p = 0.010). In hemiparkinsonian rats, a higher number of SNc neurons (88 % of recorded cells) decreased spiking frequency to 61.6 ± 4.4 % of baseline (p = 0.030). We also noted that 43 % of SNc neurons in naïve rats increased spiking frequency from 0.2 ± 0.0 Hz at baseline to 1.8 ± 0.3 Hz during stimulation, but only 1 SNc neuron from 1 hemiparkinsonian rat increased its spiking frequency by 12 % during STN-DBS. Overall, STN-DBS decreased spike frequency in the majority of recorded SNc neurons in a rat model of PD. Less homogenous responsiveness in directionality in SNc neurons during STN-DBS was seen in naive rats. Plausibly, poly-synaptic network signaling from STN-DBS may underlie these changes in SNc spike frequencies.


Assuntos
Potenciais de Ação , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Parte Compacta da Substância Negra/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Masculino , Doença de Parkinson/fisiopatologia , Ratos Sprague-Dawley
2.
Exp Neurol ; 317: 155-167, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30890329

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with affected individuals exhibiting motor symptoms of bradykinesia, muscle rigidity, tremor, postural instability and gait dysfunction. The current gold standard treatment is pharmacotherapy with levodopa, but long-term use is associated with motor response fluctuations and can cause abnormal movements called dyskinesias. An alternative treatment option is deep brain stimulation (DBS) with the two FDA-approved brain targets for PD situated in the basal ganglia; specifically, in the subthalamic nucleus (STN) and globus pallidus pars interna (GPi). Both improve quality of life and motor scores by ~50-70% in well-selected patients but can also elicit adverse effects on cognition and other non-motor symptoms. Therefore, identifying a novel DBS target that is efficacious for patients not optimally responsive to current DBS targets with fewer side-effects has clear clinical merit. Here, we investigate whether the ventroanterior (VA) and ventrolateral (VL) motor nuclei of the thalamus can serve as novel and effective DBS targets for PD. In the limb-use asymmetry test (LAT), hemiparkinsonian rats showcased left forelimb akinesia and touched only 6.5 ±â€¯1.3% with that paw. However, these animals touched equally with both forepaws with DBS at 10 Hz, 100 µsec pulse width and 100 uA cathodic stimulation in the VA (n = 7), VL (n = 8) or at the interface between the two thalamic nuclei which we refer to as the VA|VL (n = 12). With whole-cell patch-clamp recordings, we noted that VA|VL stimulation in vitro increased the number of induced action potentials in proximal neurons in both areas albeit VL neurons transitioned from bursting to non-bursting action potentials (APs) with large excitatory postsynaptic potentials time-locked to stimulation. In contrast, VA neurons were excited with VA|VL electrical stimulation but with little change in spiking phenotype. Overall, our findings show that DBS in the VA, VL or VA|VL improved motor function in a rat model of PD; plausibly via increased excitation of residing neurons.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Doença de Parkinson Secundária/terapia , Núcleos Ventrais do Tálamo , Potenciais de Ação , Animais , Discinesias/etiologia , Discinesias/terapia , Potenciais Pós-Sinápticos Excitadores , Membro Anterior , Lateralidade Funcional , Hidroxidopaminas , Masculino , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA