Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 26204, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184469

RESUMO

We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.

2.
Chemistry ; 20(12): 3376-83, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24677214

RESUMO

We examined the acid­base properties of water films adsorbed onto a Ru(0001) substrate by using surface spectroscopic methods in vacuum environments. Ammonia adsorption experiments combined with low-energy sputtering (LES), reactive ion scattering (RIS), reflection­absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) measurements showed that the adsorbed water is acidic enough to transfer protons to ammonia. Only the water molecules in an intact water monolayer and water clusters larger than the hexamer exhibit such acidity, whereas small clusters, a thick ice film or a partially dissociated water monolayer that contains OH, H2O and H species are not acidic. The observations indicate the orientation-specific acidity of adsorbed water. The acidity stems from water molecules with H-down adsorption geometry present in the monolayer. However, the dissociation of water into H and OH on the surface does not promote but rather suppresses the proton transfer to ammonia.

3.
J Chem Phys ; 139(7): 074201, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23968081

RESUMO

We present a capacitor-type device that can generate strong electrostatic field in condensed phase. The device comprises an ice film grown on a cold metal substrate in vacuum, and the film is charged by trapping Cs(+) ions on the ice surface with thermodynamic surface energy. Electric field within the charged film was monitored through measuring the film voltage using a Kelvin work function probe and the vibrational Stark effect of acetonitrile using IR spectroscopy. These measurements show that the electric field can be increased to ∼4 × 10(8) V m(-1), higher than that achievable by conventional metal plate capacitors. In addition, the present device may provide several advantages in studying the effects of electric field on molecules in condensed phase, such as the ability to control the sample composition and structure at molecular scale and the spectroscopic monitoring of the sample under electric field.

4.
J Chem Phys ; 137(20): 204704, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23206024

RESUMO

We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H(3)O(+)) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H∕D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H(3)O(+) species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H(3)O(+) species induced the H∕D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs(+) reactive ion scattering method. Thermal and temporal stabilities of H(3)O(+) and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at ∼53 K and decreased to ∼5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H(3)O(+) in the ice was estimated to be about two water molecules at ∼54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

5.
Angew Chem Int Ed Engl ; 51(51): 12806-9, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23136134
6.
Phys Rev Lett ; 108(22): 226103, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003627

RESUMO

Hydronium (H(3)O(+)) ions at an ice surface penetrate into its interior over a substantially longer distance than hydroxide (OH(-)) ions. The observation was made by conducting reactive ion scattering and infrared spectroscopic measurements for the acid-base reaction between surface H(3)O(+) (or OH(-)) and NH(3) (or NH(4)(+)) trapped inside an amorphous ice film at low temperature (<100 K). The study reveals very different transport efficiencies of positive and negative ion defects in ice. This difference is explained by the occurrence of an efficient proton-relay channel for H(3)O(+), which does not exist for OH(-).

7.
Chem Asian J ; 6(3): 938-44, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21108286

RESUMO

We studied the initial-stage mechanism of the electrophilic addition reaction of ethene with HCl by examining the interactions between ethene and HCl on water-ice and frozen molecular films at temperatures of 80-140 K. Cs(+) reactive ion scattering (RIS) and low-energy sputtering (LES) techniques were used to probe the reaction intermediates that were kinetically trapped on the surface, in conjunction with temperature-programmed desorption (TPD) mass spectrometry to monitor the desorbing species. The reaction initially produced the π complex of HCl and ethene at temperatures below about 93 K and an "ethyl cationic species" at temperatures below about 100 K. The ethyl cationic species was formed via direct proton transfer from the HCl molecule to ethene with the assistance of water solvation, rather than via the interaction of hydronium ions and ethene. At high temperatures, this species dissociated into ethene and hydronium and chloride ions. The reaction did not, however, complete the final transition state on the ice surface to produce ethyl chloride. The observation gives evidence that the electrophilic addition reaction of ethene occurs through an ethyl-like intermediate with an ionic character.

8.
J Chem Phys ; 133(4): 044709, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687678

RESUMO

We estimated the energy barrier of proton transfer on ice film surfaces through the measurement of the H/D exchange kinetics of H(2)O and D(2)O molecules. The isotopomeric populations of water molecules and hydronium ions on the surface were monitored by using the techniques of reactive ion scattering and low energy sputtering, respectively, along the progress of the H/D reaction. When hydronium ions were externally added onto an ice film at a temperature of 70 K, a proton was transferred from the hydronium ion mostly to an adjacent water molecule. The proton transfer distance and the H/D exchange rate increased as the temperature increased for 90-110 K. The activation energy of the proton transfer was estimated to be 10+/-3 kJ mol(-1) on a polycrystalline ice film grown at 135 K. The existence of a substantial energy barrier for proton transfer on the ice surface agreed with proton stabilization at the surface. We also examined the H/D exchange reaction on a pure ice film surface at temperatures of 110-130 K. The activation energy of the reaction was estimated to be 17+/-4 kJ mol(-1), which was contributed from the ion pair formation and proton transfer processes on the surface.

9.
Phys Chem Chem Phys ; 12(38): 12000-11, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20683515

RESUMO

Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.

10.
Phys Chem Chem Phys ; 10(32): 4814-6, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18688524

RESUMO

We have examined proton transport through an ice film in the temperature range 73-140 K by initially adding hydronium ions into the interior of the film and then monitoring the build-up of hydronium ion population at the film surface. The result confirms that the proton exhibits limited mobility in the ice film at low temperature, but it becomes highly mobile at temperature above 130 K. Based on this result we suggest an explanation of the anomalous experimental observations in the literature for the proton mobility in ice films.

11.
J Chem Phys ; 128(19): 191101, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18500846

RESUMO

UV irradiation of ice films adsorbed with methylamine molecules induces protonation of the adsorbate molecules at low temperature (50-130 K). The observation indicates that long-lived protonic defects are created in the ice film by UV light, and they transfer protons to the adsorbate molecules via tunneling mechanism at low temperature. The methylammonium ion formed by proton transfer remains to be stable at the ice surface. It is suggested that this solid-phase protonation might play a significant role in the production of molecular ions in interstellar clouds.

12.
Chemphyschem ; 8(17): 2520-5, 2007 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-17948323

RESUMO

Proton transfer from the hydronium ion to NH(3), CH3NH2, and (CH3)2NH is examined at the surface of ice films at 60 K. The reactants and products are quantitatively monitored by the techniques of Cs+ reactive-ion scattering and low-energy sputtering. The proton-transfer reactions at the ice surface proceed only to a limited extent. The proton-transfer efficiency exhibits the order NH3>(CH3)NH2=(CH3)2NH, which opposes the basicity order of the amines in the gas phase or aqueous solution. Thermochemical analysis suggests that the energetics of the proton-transfer reaction is greatly altered at the ice surface from that in liquid water due to limited hydration. Water molecules constrained at the ice surface amplify the methyl substitution effect on the hydration efficiency of the amines and reverse the order of their proton-accepting abilities.


Assuntos
Ácidos/química , Aminas/química , Amônia/química , Gelo , Prótons , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Metilação , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA