Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7160, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963891

RESUMO

A eukaryotic cell is a microscopic world within which efficient material transport is essential. Yet, how a cell manages to deliver cellular cargos efficiently in a crowded environment remains poorly understood. Here, we used interferometric scattering microscopy to track unlabeled cargos in directional motion in a massively parallel fashion. Our label-free, cargo-tracing method revealed not only the dynamics of cargo transportation but also the fine architecture of the actively used cytoskeletal highways and the long-term evolution of the associated traffic at sub-diffraction resolution. Cargos frequently run into a blocked road or experience a traffic jam. Still, they have effective strategies to circumvent those problems: opting for an alternative mode of transport and moving together in tandem or migrating collectively. All taken together, a cell is an incredibly complex and busy space where the principle and practice of transportation intriguingly parallel those of our macroscopic world.


Assuntos
Citoesqueleto , Microscopia , Transporte Biológico , Movimento (Física)
2.
Nucleic Acids Res ; 49(21): 12035-12047, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865121

RESUMO

Cisplatin is one of the most potent anti-cancer drugs developed so far. Recent studies highlighted several intriguing roles of histones in cisplatin's anti-cancer effect. Thus, the effect of nucleosome formation should be considered to give a better account of the anti-cancer effect of cisplatin. Here we investigated this important issue via single-molecule measurements. Surprisingly, the reduced activity of cisplatin under [NaCl] = 180 mM, corresponding to the total concentration of cellular ionic species, is still sufficient to impair the integrity of a nucleosome by retaining its condensed structure firmly, even against severe mechanical and chemical disturbances. Our finding suggests that such cisplatin-induced fastening of chromatin can inhibit nucleosome remodelling required for normal biological functions. The in vitro chromatin transcription assay indeed revealed that the transcription activity was effectively suppressed in the presence of cisplatin. Our direct physical measurements on cisplatin-nucleosome adducts suggest that the formation of such adducts be the key to the anti-cancer effect by cisplatin.


Assuntos
Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Cisplatino/farmacologia , Neoplasias/tratamento farmacológico , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Nucleossomos/metabolismo
3.
J Phys Chem Lett ; 11(23): 10233-10241, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33206530

RESUMO

Focal adhesions (FAs) are dynamic protein nanostructures that form mechanical links between cytoskeletal actin fibers and the extracellular matrix. Here, we demonstrate that interferometric scattering (iSCAT) microscopy, a high-speed and time-unlimited imaging technique, can uncover the real-time dynamics of nanoscopic nascent adhesions (NAs). The high sensitivity and stability of the iSCAT signal enabled us to trace the whole life span of each NA spontaneously nucleated under a lamellipodium. Such high-throughput and long-term image data provide a unique opportunity for statistical analysis of adhesion dynamics. Moreover, we directly revealed that FAs play critical roles in both the extrusion of filopodia as nucleation sites on the leading edge and the one-dimensional transport of cargos along cytoskeletal fibers as fiber docking sites. These experimental results show that iSCAT is a sensitive tool for tracking real-time dynamics of nanoscopic objects involved in endogenous and exogenous biological processes in living cells.


Assuntos
Fluorescência , Imagem Óptica , Adesão Celular , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Interferência , Zixina/química , Zixina/metabolismo
4.
Opt Lett ; 45(9): 2628-2631, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356833

RESUMO

Interferometric scattering (iSCAT) microscopy enables us to track nm-sized objects with high spatial and temporal resolutions and permits label-free imaging of biomolecules. Its superb sensitivity, however, comes at a cost by several downsides, such as slow three-dimensional imaging and limited vertical tracking. Here, we propose a new method, Remote Focusing-iSCAT (RF-iSCAT) microscopy, to visualize a volume specimen by imaging sections at different depths without translation of either the objective lens or sample stage. We demonstrate the principle of RF-iSCAT by determining the z-position of submicrometer beads by translating the reference mirror instead. RF-iSCAT features an unprecedentedly long range of vertical tracking and permits fast but vibration-free vertical scanning. We anticipate that RF-iSCAT would enhance the utility of iSCAT for dynamics study.


Assuntos
Imageamento Tridimensional/instrumentação , Microscopia/instrumentação , Fenômenos Ópticos , Interferometria
5.
Chem Sci ; 9(10): 2690-2697, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29732052

RESUMO

Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli, and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g., focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA