RESUMO
This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.
RESUMO
Plant diseases and insect pest damage cause tremendous losses in forestry and fruit tree production. Even though chemical pesticides have been effective in the control of plant diseases and insect pests for several decades, they are increasingly becoming undesirable due to their toxic residues that affect human life, animals, and the environment, as well as the growing challenge of pesticide resistance. In this study, we review the potential of hydrolytic enzymes from Bacillus species such as chitinases, ß-1,3-glucanases, proteases, lipases, amylases, and cellulases in the biological control of phytopathogens and insect pests, which could be a more sustainable alternative to chemical pesticides. This study highlights the application potential of the hydrolytic enzymes from different Bacillus sp. as effective biocontrol alternatives against phytopathogens/insect pests through the degradation of cell wall/insect cuticles, which are mainly composed of structural polysaccharides like chitins, ß-glucans, glycoproteins, and lipids. This study demonstrates the prospects for applying hydrolytic enzymes from Bacillus sp. as effective biopesticides in forest and fruit tree production, their mode of biocidal activity and dual antimicrobial/insecticidal potential, which indicates a great prospect for the simultaneous biocontrol of pests/diseases. Further research should focus on optimizing the production of hydrolytic enzymes, and the antimicrobial/insecticidal synergism of different Bacillus sp. which could facilitate the simultaneous biocontrol of pests and diseases in forest and fruit tree production.
Assuntos
Anti-Infecciosos , Bacillus , Inseticidas , Praguicidas , Animais , Florestas , Frutas , Insetos , Controle Biológico de Vetores/métodos , ÁrvoresRESUMO
Biocontrol strategies are gaining tremendous attention in insect pest management, such as controlling termite damage, due to the growing awareness of the irreparable harm caused by the continuous use of synthetic pesticides. This study examines the proteolytic and chitinolytic activities of Bacillus velezensis CE 100 and its termiticidal effect through cuticle degradation. The proteolytic and chitinolytic activities of B. velezensis CE 100 systematically increased with cell growth to the respective peaks of 68.3 and 128.3 units/mL after seven days of inoculation, corresponding with the highest cell growth of 16 × 107 colony-forming units (CFU)/mL. The in vitro termiticidal assay showed that B. velezensis CE 100 caused a rapid and high rate of termite mortality, with a median lethal time (LT50) of >1 h and the highest mortality rates of 91.1% and 92.2% recorded at 11 h and 12 h in the bacterial broth culture and crude enzyme fraction, respectively. In addition to broken setae and deformed sockets, termites treated with the bacterial broth culture exhibited degraded epicuticles, while the crude enzyme fraction caused severe disintegration of both the epicuticle and endocuticle. These results indicate the tremendously higher potential of B. velezensis CE 100 in the biological control of subterranean termites compared to the previously used entomopathogenic bacteria.
Assuntos
Bacillus , Isópteros , Animais , Bacillus/metabolismo , Insetos , República da CoreiaRESUMO
Due to the increasing health and environmental risks associated with the use of fungicides in agriculture, alternatives-such as using plant growth-promoting bacteria (PGPB) to suppress phytopathogens-that simultaneously improve plant yield, are important. This study evaluated the biocontrol efficiency of Bacillus velezensis CE100 against Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, the respective causal agents for charcoal rot and fusarium wilt diseases in strawberry, and its potential to enhance strawberry growth and fruit production. B. velezensis CE 100 produced fungal cell wall-degrading enzymes, chitinases, and ß-1,3-glucanases; and inhibited the mycelial growth of M. phaseolina and F. oxysporum f. sp. fragariae by 64.7% and 55.2%, respectively. The mycelia of both phytopathogenic fungi showed severe swelling and rupturing of the hyphae compared to the smooth, normal growth in the control group. Moreover, B. velezensis CE100 produced up to 2.8 units/mL of indole-3-acetic acid (IAA) during incubation and enhanced root biomass in strawberries. Consequently, B. velezensis CE 100 not only increased the fruit yield of strawberries by controlling the fungal diseases but also through enhancing plant growth. The findings of this study indicate that B. velezensis CE100 could be a safe, ecofriendly biocontrol alternative to chemical fungicides in strawberry production.
RESUMO
Walnut anthracnose caused by Colletotrichum gloeosporioides is a deleterious disease that severely affects the production of walnut (Juglans regia L.). The aim of this study was to assess the antifungal and growth promotion activities of Bacillus velezensis CE 100 as an alternative to chemical use in walnut production. The crude enzyme from B. velezensis CE 100 exhibited chitinase, protease, and ß-l,3-glucanase activity and degraded the cell wall of C. gloeosporioides, causing the inhibition of spore germination and mycelial growth by 99.3% and 33.6% at 100 µL/mL, respectively. The field application of B. velezensis CE 100 culture broth resulted in a 1.3-fold and 6.9-fold decrease in anthracnose disease severity compared to the conventional and control groups, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (up to 1.4 µg/mL) and exhibited the potential for ammonium production and phosphate solubilization to enhance the availability of essential nutrients. Thus, field inoculation of B. velezensis CE 100 improved walnut root development, increased nutrient uptake, enhanced chlorophyll content, and consequently improved total biomass by 1.5-fold and 2.0-fold compared to the conventional and control groups, respectively. These results demonstrate that B. velezensis CE 100 is an effective biocontrol agent against anthracnose disease and a potential plant growth-promoting bacteria in walnut tree production.
Assuntos
Antifúngicos , Bacillus/química , Colletotrichum/crescimento & desenvolvimento , Misturas Complexas , Juglans , Doenças das Plantas/microbiologia , Raízes de Plantas , Antifúngicos/química , Antifúngicos/farmacologia , Misturas Complexas/química , Misturas Complexas/farmacologia , Juglans/crescimento & desenvolvimento , Juglans/microbiologia , Controle Biológico de Vetores , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologiaRESUMO
Optical properties of benzimidazole (BI)-doped layer-by-layer graphene differ significantly from those of intrinsic graphene. Our study based on transmission electron microscopy and X-ray photoelectron spectroscopy depth profiling reveals that such a difference stems from its peculiar stratified geometry formed in situ during the doping process. This work presents an effective thickness and optical constants that can treat these multi-stacked BI-doped graphene electrodes as a single equivalent medium. For verification, the efficiency and angular emission spectra of organic light-emitting diodes with the BI-doped graphene electrode are modeled with the proposed method, and we demonstrate that the calculation matches experimental results in a much narrower margin than that based on the optical properties of undoped graphene.
RESUMO
Leaf blight disease caused by Pestalotiopsismaculans lead to deleterious losses in the quality of forest container seedlings. The use of plant growth-promoting bacteria provides a promising strategy to simultaneously control diseases and enhance forest seedling production. This study investigated the biocontrol of leaf blight disease and growth promotion potential of Bacillus velezensis CE 100 in Quercus acutissima Carruth seedlings. B. velezensis CE 100 produced cell wall degrading enzymes, such as chitinase, ß-l,3-glucanase, and protease, which caused cell wall lysis and hyphae deformation of P. maculans, leading to mycelial growth inhibition by 54.94%. Inoculation of B. velezensis CE 100 suppressed P. maculans infection and increased seedling survival rate by 1.6-fold and 1.3-fold compared to chemical fertilizer and control, respectively. In addition, B. velezensis CE 100 produced indole-3-acetic acid, which improved root development and nutrient uptake compared to chemical fertilizer and control. Especially, inoculation with B. velezensis CE 100 increased the total nitrogen content of Q. acutissima seedlings, improved the chlorophyll index in the leaves, and increased seedling biomass by 1.3-fold and 2.2-fold compared to chemical fertilizer and control, respectively. Thus, B. velezensis CE 100 could be applied in the eco-friendly production of high-quality forest seedlings.
Assuntos
Antifúngicos/farmacologia , Bacillus/química , Controle Biológico de Vetores , Pestalotiopsis/fisiologia , Doenças das Plantas/prevenção & controle , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Florestas , Desenvolvimento Vegetal , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Quercus/microbiologia , Plântula/microbiologiaRESUMO
Populus canadensis Moench forests established in Saemangeum-reclaimed land have been invaded by Hyphantria cunea Drury, causing defoliation and stunted growth. This study investigated the biocontrol potential of cuticle degrading chitinase and protease secreted by Lysobacter antibioticus HS124 against H. cunea larvae. In addition, L. antibioticus HS124 was examined for indole-3-acetic acid phytohormone production for plant growth promotion. To determine the larvicidal activity in the laboratory experiments, crude enzymes, bacteria culture, CY medium, and water (control) were sprayed on the larvae reared on natural diet in insect rearing dishes. Treatment with crude enzymes and bacteria culture caused 76.7% and 66.7% larvae mortality, respectively. The larvae cuticle, mainly composed of chitin and proteins, was degraded by cuticle-degrading enzymes, chitinase, and protease in both the bacteria culture and crude enzyme treatments, causing swelling and disintegration of the cuticle. Field application of the bacteria culture was achieved by vehicle-mounted sprayer. Bacterial treatment caused morphological damage on the larvae cuticles and subsequent mortality. Foliar application of the bacteria culture reduced tree defoliation by H. cunea and enhanced growth compared to the control. Especially, L. antibioticus HS124 produced auxins, and increased growth of poplar trees.
RESUMO
Root rot diseases, caused by phytopathogenic oomycetes, Phytophthora spp. cause devastating losses involving forest seedlings, such as Japanese cypress (Chamaecyparis obtusa Endlicher) in Korea. Plant growth-promoting rhizobacteria (PGPR) are a promising strategy to control root rot diseases and promote growth in seedlings. In this study, the potential of Bacillus velezensis CE 100 in controlling Phytophthora root rot diseases and promoting the growth of C. obtusa seedlings was investigated. B. velezensis CE 100 produced ß-1,3-glucanase and protease enzymes, which degrade the ß-glucan and protein components of phytopathogenic oomycetes cell-wall, causing mycelial growth inhibition of P. boehmeriae, P. cinnamomi, P. drechsleri and P. erythoroseptica by 54.6%, 62.6%, 74.3%, and 73.7%, respectively. The inhibited phytopathogens showed abnormal growth characterized by swelling and deformation of hyphae. B. velezensis CE 100 increased the survival rate of C. obtusa seedlings 2.0-fold and 1.7-fold compared to control, and fertilizer treatment, respectively. Moreover, B. velezensis CE 100 produced indole-3-acetic acid (IAA) up to 183.7 mg/L, resulting in a significant increase in the growth of C. obtusa seedlings compared to control, or chemical fertilizer treatment, respectively. Therefore, this study demonstrates that B. velezensis CE 100 could simultaneously control Phytophthora root rot diseases and enhance growth of C. obtusa seedlings.
RESUMO
The aim of this study was to investigate the antifungal activity of a cyclic tetrapeptide from Bacillus velezensis CE 100 against anthracnose-causing fungal pathogen Colletotrichum gloeosporioides. Antifungal compound produced by B. velezensis CE 100 was isolated and purified from ethyl acetate extract of B. velezensis CE 100 culture broth using octadecylsilane column chromatography. The purified compound was identified as cyclo-(prolyl-valyl-alanyl-isoleucyl) based on mass spectrometer and nuclear magnetic resonance analyses. This is the first report of the isolation of a cyclic tetrapeptide from B. velezensis CE 100 culture filtrate. Cyclic tetrapeptide displayed strong antifungal activity at concentration of 1000 µg/mL against C. gloeosporioides mycelial growth and spore germination. Our results demonstrate that the antifungal cyclic tetrapeptide from B. velezensis CE 100 has potential in bioprotection against anthracnose disease of plants caused by C. gloeosporioides.
RESUMO
The ratio of spontaneous emission inside a diode structure to that in free space is called the Purcell factor (F(λ)). The structure of organic light-emitting diodes (OLEDs) has a significant influence on the spontaneous emission rate of dipole emitters. Therefore, to describe the optical properties of OLEDs, it is essential to incorporate F(λ) in the description. However, many optical studies on OLEDs continue to be conducted without considering F(λ) for simplicity's sake. Hence, in this study, using carefully designed bottom- and top-emitting OLEDs, we show that the external quantum efficiency obtained without considering F(λ) can be over- or under-estimated, and in some cases, the margin of error may be significant. We also reveal that the subtle distribution of the electroluminescence spectrum can be explained properly only by including F(λ). Both these results stipulate the importance of including F(λ) to maintain a quantitative agreement between theoretical and experimental data. Hence, the inclusion of F(λ) is important for designing OLEDs with enhanced efficiency or desired spectral characteristics.
RESUMO
Modification of multilayer graphene films was investigated for a cathode of organic light-emitting diodes (OLEDs). By doping the graphene/electron transport layer (ETL) interface with Li, the driving voltage of the OLED was reduced dramatically from 24.5 to 3.2 V at a luminance of 1000 cd/m2. The external quantum efficiency was also enhanced from 3.4 to 12.9%. Surface analyses showed that the Li doping significantly lowers the lowest unoccupied molecular orbital level of the ETL, thereby reducing the electron injection barrier and facilitating electron injection from the cathode. Impedance spectroscopy analyses performed on electron-only devices (EODs) revealed the existence of distributed trap states with a well-defined activation energy, which is successfully described by the Havriliak-Negami capacitance functions and the temperature-independent frequency dispersion parameters. In particular, the graphene EOD showed a unique high-frequency feature as compared to the indium tin oxide one, which could be explained by an additional parallel capacitance element.
RESUMO
We propose an effective way to enhance the out-coupling efficiencies of organic light-emitting diodes (OLEDs) using graphene as a transparent electrode. In this study, we investigated the detrimental adsorption and internal optics occurring in OLEDs with graphene anodes. The optical out-coupling efficiencies of previous OLEDs with transparent graphene electrodes barely exceeded those of OLEDs with conventional transparent electrodes because of the weak microcavity effect. To overcome this issue, we introduced an internal random scattering layer for light extraction and reduced the optical absorption of the graphene by reducing the number of layers in the multilayered graphene film. The efficiencies of the graphene-OLEDs increased significantly with decreasing the number of graphene layers, strongly indicating absorption reduction. The maximum light extraction efficiency was obtained by using a single-layer graphene electrode together with a scattering layer. As a result, a widened angular luminance distribution with a remarkable external quantum efficiency and a luminous efficacy enhancement of 52.8% and 48.5%, respectively, was achieved. Our approach provides a demonstration of graphene-OLED having a performance comparable to that of conventional OLEDs.
RESUMO
With increasing demand for transparent conducting electrodes, graphene has attracted considerable attention, owing to its high electrical conductivity, high transmittance, low reflectance, flexibility, and tunable work function. Two faces of single-layer graphene are indistinguishable in its nature, and this idea has not been doubted even in multilayered graphene (MLG) because it is difficult to separately characterize the front (first-born) and the rear face (last-born) of MLG by using conventional analysis tools, such as Raman and ultraviolet spectroscopy, scanning probe microscopy, and sheet resistance. In this paper, we report the striking difference of the emission pattern and performance of transparent organic light-emitting diodes (OLEDs) depending on the adopted face of MLG and show the resolved chemical and physical states of both faces by using depth-selected absorption spectroscopy. Our results strongly support that the interface property between two different materials rules over the bulk property in the driving performance of OLEDs.
RESUMO
In this work, we suggest a graphene/ poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composite as a transparent electrode for stabilizing white emission of organic light-emitting diodes (OLEDs). Graphene/PEDOT:PSS composite electrodes have increased reflectance when compared to graphene itself, but their reflectance is still lower than that of ITO itself. Changes in the reflectance of the composite electrode have the advantage of suppressing the angular spectral distortion of white emission OLEDs and achieving an efficiency of 16.6% for white OLEDs, comparable to that achieved by graphene-only electrodes. By controlling the OLED structure to compensate for the two-beam interference effect, the CIE color coordinate change (Δxy) of OLEDs based on graphene/PEDOT:PSS composite electrodes is 0.018, less than that based on graphene-only electrode, i.e.,0.027.
RESUMO
White organic light-emitting diodes (WOLEDs) are regarded as the general lighting source. Although color rendering index (CRI) and luminous efficacy are usually in trade-off relation, we will discuss about the optimization of both characteristics, particularly focusing on the spectrum of a blue emitter. The emission at a shorter wavelength is substantially important for achieving very high CRI (> 90). The luminous efficacy of a phosphorescent blue emitter is low as its color falls in the deeper blue range; however, that does not show any significant influence on the WOLEDs. WOLEDs with different blue dopants are compared to confirm the calculation of the CRI and luminous efficacy, and the optimized WOLEDs exhibit luminous efficacy of 38.3 lm/W and CRI of 90.9.
RESUMO
We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.
RESUMO
An optical functional film applicable to various lighting devices is demonstrated in this study. The phase separation of two immiscible polymers in a common solvent was used to fabricate the film. In this paper, a self-organized lens-like structure is realized in this manner with optical OLED functional film. For an OLED, there are a few optical drawbacks, including light confinement or viewing angle distortion. By applying the optical film to an OLED, the angular spectra distortion resulting from the designed organic stack which produced the highest efficiency was successfully stabilized, simultaneously enhancing the efficiency of the OLED. We prove the effect of the film on the efficiency of OLEDs through an optical simulation. With the capability to overcome the main drawbacks of OLEDs, we contend that the proposed film can be applied to various lighting devices.
RESUMO
Area-selective external light extraction films based on wrinkle structured films were applied to large transparent organic light-emitting diodes (TOLEDs) with auxiliary metal buses. To be specific, on the external surface of the glass, we selectively formed a wrinkle structured film, which was aligned to the auxiliary metal electrodes. The wrinkle-structured film was patterned using a photo-mask and UV curing, which has the same shape of the auxiliary metal electrodes. With this area-selective film, it was possible to enhance the external quantum efficiencies of the bottom and top emissions TOLEDs by 15.7% and 15.1%, respectively, without significant loss in transmittance. Widened angular luminance distributions were also achieved in both emissions directions.
RESUMO
Special characteristics of wrinkles such as a scattering source and a high surface area are finding use in high-tech applications. UV-crosslinkable prepolymers are occasionally used for fabricating wrinkled films. Wavelength of the wrinkles formed from the prepolymers is several tens and hundreds of micrometers. Here, a UV-crosslinkable liquid prepolymer is synthesized to spontaneously form wrinkle structures in the order of several micrometers. Double layers with a very thin hard skin and a soft and contractible foundation are formed at the same time, by ensuring that all the absorbance wavelengths of the photoinitiator are shorter than the minimum wavelength at which the prepolymer is transparent. The rate of photo-crosslinking reaction, R(p), is also found to affect the thickness of the skin and foundation layers at the early UV-curing stage. The first-order apparent rate constant, k(app), is between ≈0.20 and ≈0.69 s(-1) for the wrinkle formation. This wrinkle structures can be simply modulated by changing R(p).