Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402272, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148206

RESUMO

Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cm⁻2 over 11 h) and super stable (64 h at 150 mA cm⁻2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long-term stability at high-current operation.

2.
Small ; : e2402988, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982943

RESUMO

Zero-excess Li-metal batteries (ZE-LMBs) have emerged as the ultimate battery platform, offering an exceptionally high energy density. However, the absence of Li-hosting materials results in uncontrolled dendritic Li deposition on the Cu current collector, leading to chronic loss of Li inventory and severe electrolyte decomposition, limiting its full utilization upon cycling. This study presents the application of ultrathin (≈50 nm) coatings comprising six metallic layers (Cu, Ag, Au, Pt, W, and Fe) on Cu substrates in order to provide insights into the design of Li-depositing current collectors for stable ZE-LMB operation. In contrast to non-alloy Cu, W, and Fe coatings, Ag, Au, and Pt coatings can enhance surface lithiophilicity, effectively suppressing Li dendrite growth, thereby improving Li reversibility. Considering the distinct Li-alloying behaviors, particularly solid-solution and/or intermetallic phase formation, Pt-coated Cu current collectors maintain surface lithiophilicity over repeated Li plating/stripping cycles by preserving the original coating layer, thereby attaining better cycling performance of ZE-LMBs. This highlights the importance of selecting suitable Li-alloy metals to sustain surface lithiophilicity throughout cycling to regulate dendrite-less Li plating and improve the electrochemical stability of ZE-LMBs.

3.
Sci Rep ; 14(1): 17026, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043821

RESUMO

Electroadhesive forces are crucial in various applications, including grasping devices, electro-sticky boards, electrostatic levitation, and climbing robots. However, the design of electroadhesive devices relies on speculative or empirical error approaches. Therefore, we present a theoretical model comprising predictive coplanar electrodes and protective layers for analyzing the electrostatic fields between an object and electroadhesive device. The model considers the role of protective layer and the air gap between the electrode surface and the object. To exert a higher electroadhesive force, the higher permeability of the protective layer is required. However, a high permeability of the protective layer is hard to withstand high applied voltage. To overcome this, two materials with different permeabilities were employed as protective layers-a low-permeability inner layer and a high-permeability outer layer-to maintain a high voltage and generate a large electroadhesive force. Because a low-permeability inner layer material was selected, a more permeable outer layer material was considered. A theoretical analysis revealed complex relationships between various design parameters. The impact of key design parameters and working environments on the electroadhesion behavior was further investigated. This study reveals the fundamental principles of electroadhesion and proposes prospective methods to enhance the design of electroadhesive devices for various engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA