Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Anim Cells Syst (Seoul) ; 28(1): 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577621

RESUMO

The tumor microenvironment comprises both tumor and non-tumor stromal cells, including tumor-associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts. TAMs, major components of non-tumor stromal cells, play a crucial role in creating an immunosuppressive environment by releasing cytokines, chemokines, growth factors, and immune checkpoint proteins that inhibit T cell activity. During tumors develop, cancer cells release various mediators, including chemokines and metabolites, that recruit monocytes to infiltrate tumor tissues and subsequently induce an M2-like phenotype and tumor-promoting properties. Metabolites are often overlooked as metabolic waste or detoxification products but may contribute to TAM polarization. Furthermore, macrophages display a high degree of plasticity among immune cells in the tumor microenvironment, enabling them to either inhibit or facilitate cancer progression. Therefore, TAM-targeting has emerged as a promising strategy in tumor immunotherapy. This review provides an overview of multiple representative metabolites involved in TAM phenotypes, focusing on their role in pro-tumoral polarization of M2.

2.
BMB Rep ; 57(2): 92-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964636

RESUMO

Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory elementbinding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis. [BMB Reports 2024; 57(2): 92-97].


Assuntos
Glucosamina , Transdução de Sinais , Animais , Camundongos , Glucosamina/farmacologia , Lipopolissacarídeos , Macrófagos , Células RAW 264.7 , RNA Mensageiro , Sirolimo , Serina-Treonina Quinases TOR , Fatores de Transcrição
3.
Biochem Biophys Res Commun ; 690: 149292, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000296

RESUMO

Atherosclerosis is a chronic inflammatory disease for which hepatic steatosis and atherogenic dyslipidemia are significant risk factors. We investigated the effects of endogenously generated very-long-chain polyunsaturated fatty acids (VL-PUFAs) on dyslipidemia and atherosclerosis development using mice that lack ELOVL5, a PUFA elongase that is required for the synthesis of arachidonic acid, EPA, and DHA from the essential fatty acids linoleic and linolenic acids, and the LDL receptor (LDLR). Elovl5-/-;Ldlr-/- mice manifest increased liver triglyceride and cholesterol concentrations due to the activation of sterol regulatory element binding protein-1, a transcription factor that activates enzymes required for de novo lipogenesis. Plasma levels of triglycerides and cholesterol in VLDL, IDL, and LDL were markedly elevated in Elovl5-/-;Ldlr-/- mice fed a chow and the mice exhibited marked aortic atherosclerotic plaques. Bone marrow-derived monocytes from wild-type (WT) and Elovl5-/- mice were polarized to M1 and M2 macrophages, and the effects of ELOVL5 on inflammatory activity were determined. There were no differences in most of the markers tested for M1 and M2 polarized cells between WT and Elovl5-/- cells, except for a slight increase in PGE2 secretion in Elovl5-/- cells, likely due to elevated Cox-2 expression. These results suggest that the deletion of Elovl5 leads to hepatic steatosis and dyslipidemia, which are the major factors in severe atherosclerosis in Elovl5-/-;Ldlr-/- mice.


Assuntos
Aterosclerose , Dislipidemias , Fígado Gorduroso , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Dislipidemias/complicações , Dislipidemias/genética , Dislipidemias/metabolismo , Elongases de Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo
4.
Hum Genet ; 142(8): 1055-1076, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37199746

RESUMO

Fatty acid elongase ELOVL5 is part of a protein family of multipass transmembrane proteins that reside in the endoplasmic reticulum where they regulate long-chain fatty acid elongation. A missense variant (c.689G>T p.Gly230Val) in ELOVL5 causes Spinocerebellar Ataxia subtype 38 (SCA38), a neurodegenerative disorder characterized by autosomal dominant inheritance, cerebellar Purkinje cell demise and adult-onset ataxia. Having previously showed aberrant accumulation of p.G230V in the Golgi complex, here we further investigated the pathogenic mechanisms triggered by p.G230V, integrating functional studies with bioinformatic analyses of protein sequence and structure. Biochemical analysis showed that p.G230V enzymatic activity was normal. In contrast, SCA38-derived fibroblasts showed reduced expression of ELOVL5, Golgi complex enlargement and increased proteasomal degradation with respect to controls. By heterologous overexpression, p.G230V was significantly more active than wild-type ELOVL5 in triggering the unfolded protein response and in decreasing viability in mouse cortical neurons. By homology modelling, we generated native and p.G230V protein structures whose superposition revealed a shift in Loop 6 in p.G230V that altered a highly conserved intramolecular disulphide bond. The conformation of this bond, connecting Loop 2 and Loop 6, appears to be elongase-specific. Alteration of this intramolecular interaction was also observed when comparing wild-type ELOVL4 and the p.W246G variant which causes SCA34. We demonstrate by sequence and structure analyses that ELOVL5 p.G230V and ELOVL4 p.W246G are position-equivalent missense variants. We conclude that SCA38 is a conformational disease and propose combined loss of function by mislocalization and gain of toxic function by ER/Golgi stress as early events in SCA38 pathogenesis.


Assuntos
Ataxias Espinocerebelares , Animais , Camundongos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxia , Elongases de Ácidos Graxos/genética , Sequência de Aminoácidos , Mutação
5.
Anim Cells Syst (Seoul) ; 27(1): 61-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970499

RESUMO

The development of colorectal cancer typically involves the accumulated influences of genetic alterations, medical issues, lifestyle, and diet. Dietary fatty acids appear to affect the tumorigenesis and progression of colorectal cancer. Despite conflicting results, the current consensus on the effects of very long-chain polyunsaturated fatty acids on colorectal cancer is that low levels of eicosapentaenoic acid and docosahexaenoic acid, and high levels of arachidonic acid are associated with an increased risk of colorectal cancer. Altered levels of arachidonic acid in membrane phospholipids can change the levels of prostaglandin E2, which affect the biological activities of cancer cells in multiple stages. Arachidonic acid and other very long-chain polyunsaturated fatty acids can affect tumorigenesis in prostaglandin E2-independent manners as well, including stabilization of ß-catenine, ferroptosis, ROS generation, regulation of transcription factors, and de novo lipogenesis. Recent studies have revealed an association between the activities of enzymes synthesizing very long-chain polyunsaturated fatty acids and tumorigenesis and cancer progression, although the mechanisms are still unknown. In this study, PUFA effects on tumorigenesis, the endogenous very long-chain polyunsaturated fatty acid synthesis pathway, metabolites of arachidonic acid and their effects on tumorigenesis and progression of CRC, and current knowledge that supports the association of the enzymes involved in the polyunsaturated fatty acid synthesis pathway with colorectal cancer tumorigenesis and progression are reviewed.

6.
Life Sci ; 307: 120899, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988753

RESUMO

AIMS: 4-1BB is a member of the tumor necrosis factor receptor superfamily that mainly expressed on activated T-cells and plays important roles in cell proliferation and survival of T-cells and natural killer cells. The roles of 4-1BB in immune cells have been intensively studied, whereas little is known about the expression and roles of 4-1BB in cancer cells. MAIN METHODS: In the present study, we investigated 4-1BB expression in colorectal cancer tissues from human patients and established colorectal cancer cells, using mRNA expression, FACS, and immunostaining. Cancer cell proliferation and metastasis regulated by transfected 4-1BB was evaluated by cell growth rate, colony forming assay, cell migration, and Western blot with antibodies which are involved in epithelial-mesenchymal transition and anti-apoptosis. Expression of 4-1BB was knockdown by 4-1BB shRNA to prove that 4-1BB was involved in the cell proliferation. In vivo, 4-1BB transfected cancer cells were injected into mice, to induce tumor local region or lung. KEY FINDINGS: We found that colorectal cancer tissues from human patients and established colorectal cancer cells expressed 4-1BB at the high level. The higher expression of 4-1BB proliferated faster. In addition, we identified two forms of 4-1BB detected in colorectal cancer cells: full length form that was located on the plasma membrane and a short soluble form in the cytosol. The soluble form was also detected in the plasma from the mice with tumor xenografts expressed 4-1BB. SIGNIFICANCE: Tumor-mediated 4-1BB expression in the colorectal cancer cells showed effects on cancer cell proliferation, invasion, and metastasis.


Assuntos
Neoplasias Colorretais , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Animais , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Camundongos , RNA Mensageiro , RNA Interferente Pequeno/genética , Receptores do Fator de Necrose Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética
7.
Mol Cells ; 44(2): 116-125, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33658436

RESUMO

Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMGCoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.


Assuntos
Colesterol/metabolismo , Lipogênese , Fígado/metabolismo , Animais , Células Cultivadas , Ésteres do Colesterol/metabolismo , Dieta , Sacarose Alimentar , Ácidos Graxos/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Comportamento Alimentar , Hepatócitos/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Gotículas Lipídicas/metabolismo , Lipoproteínas/sangue , Masculino , Camundongos Endogâmicos C57BL , Receptores de LDL/metabolismo , Triglicerídeos/metabolismo
8.
Anim Cells Syst (Seoul) ; 24(5): 260-266, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209199

RESUMO

Polyunsaturated fatty acids (PUFAs) have important functions in biological systems. The beneficial effects of dietary PUFAs against inflammatory diseases, cardiovascular diseases, and metabolic disorders have been shown. Studies using cancer cells have presented the anti-tumorigenic effects of docosahexaenoic acid (DHA), an n-3 PUFA, while arachidonic acid (AA), an n-6 PUFA, has been shown to elicit both pro- and anti-tumorigenic effects. In the current study, the anti-tumorigenic effects of AA were evaluated in HT-29 human colon cancer cells. Upon adding AA in the media, more than 90% of HT-29 cells died, while the MCF7 cells showed good proliferation. AA inhibited the expression of SREBP-1 and its target genes that encode enzymes involved in fatty acid synthesis. As HT-29 cells contained lower basal levels of fatty acid synthase, a target gene of SREBP-1, than that in MCF7 cells, the inhibitory effects of AA on the fatty acid synthase levels in HT-29 cells were much stronger than those in MCF-7 cells. When oleic acid (OA), a monounsaturated fatty acid that can be synthesized endogenously, was added along with AA, the HT-29 cells were able to proliferate. These results suggested that HT-29 cells could not synthesize enough fatty acids for cell division in the presence of AA because of the suppression of lipogenesis. HT-29 cells may incorporate more AA into their membrane phospholipids to proliferate, which resulted in ER stress, thereby inducing apoptosis. AA could be used as an anti-tumorigenic agent against cancer cells in which the basal fatty acid synthase levels are low.

9.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396939

RESUMO

Liver fibrosis is a consequence of chronic liver injury associated with chronic viral infection, alcohol abuse, and nonalcoholic fatty liver. The evidence from clinical and animal studies indicates that transforming growth factor-ß (TGF-ß) signaling is associated with the development of liver fibrosis. Krüppel-like factor 10 (KLF10) is a transcription factor that plays a significant role in TGF-ß-mediated cell growth, apoptosis, and differentiation. In recent studies, it has been reported to be associated with glucose homeostasis and insulin resistance. In the present study, we investigated the role of KLF10 in the progression of liver disease upon a high-sucrose diet (HSD) in mice. Wild type (WT) and Klf10 knockout (KO) mice were fed either a control chow diet or HSD (50% sucrose) for eight weeks. Klf10 KO mice exhibited significant hepatic steatosis, inflammation, and liver injury upon HSD feeding, whereas the WT mice exhibited mild hepatic steatosis with no apparent liver injury. The livers of HSD-fed Klf10 KO mice demonstrated significantly increased endoplasmic reticulum stress, oxidative stress, and proinflammatory cytokines. Klf10 deletion led to the development of sucrose-induced hepatocyte cell death both in vivo and in vitro. Moreover, it significantly increased fibrogenic gene expression and collagen accumulation in the liver. Increased liver fibrosis was accompanied by increased phosphorylation and nuclear localization of Smad3. Here, we demonstrate that HSD-fed mice develop a severe liver injury in the absence of KLF10 due to the hyperactivation of the endoplasmic reticulum stress response and CCAAT/enhance-binding protein homologous protein (CHOP)-mediated apoptosis of hepatocytes. The current study suggests that KLF10 plays a protective role against the progression of hepatic steatosis into liver fibrosis in a lipogenic state.


Assuntos
Sacarose Alimentar/toxicidade , Fatores de Transcrição de Resposta de Crescimento Precoce/fisiologia , Estresse do Retículo Endoplasmático , Deleção de Genes , Inflamação/complicações , Fatores de Transcrição Kruppel-Like/fisiologia , Cirrose Hepática/etiologia , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
10.
BMC Public Health ; 18(1): 1091, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180842

RESUMO

BACKGROUND: Epidemiologic studies have presented protective effects of alcohol against cardiovascular (CV) events. However, such studies were performed mainly on Westerners. We investigated the effects of alcohol on the subclinical CV morbidity in healthy Koreans. METHODS: The coronary artery calcium (CAC) score, ankle-brachial pulse wave velocity (abPWV), and carotid intima-media thickness (cIMT) of 1004 subjects (age, years±standard deviation [SD] 53 ± 10; 72% were men) with no CV disease history were assessed. The subjects were divided into three groups based on their drinking patterns: Group 0 (abstainers), Group 1 (casual drinkers), and Group 2 (problematic drinkers; > 14 standard drinking/week for men, > 7 standard drinking/week for women). As drinking patterns can be influenced by age/sex, a regression analysis was performed in another four groups (men/women, age < 65/≥65 years). RESULTS: Group 1 exhibited lower CAC (score ± SD, 44 ± 155 vs. 13 ± 48 vs. 50 ± 159) and abPWV (cm/s ± SD, 1448 ± 284 vs. 1340 ± 190 vs. 1447 ± 245) scores and thinner cIMT (mm ± SD, 0.64 ± 0.14 vs. 0.59 ± 0.11 vs. 0.63 ± 0.13) than Groups 0 and 2 (p < 0.05 for all). Problematic drinking (odds ratio [OR]: 2.269; 95% confidence interval [CI]: 1.454-3.541) was associated with a high prevalence of CAC deposits among men aged < 65 years and casual drinking with a lower prevalence of CAC deposits (OR: 0.057; 95% CI: 0.023-0.140) among men aged ≥65 years. Conversely, problematic drinking in older women [OR: 0.117; 95% CI: 0.014-0.943) and casual drinking in younger women (OR: 0.349; 95% CI: 0.153-0.792) were associated with a lower prevalence of CAC deposits. Casual drinking was associated with a lower abPWV and thinner cIMT in the diabetes mellitus/hypertension-adjusted regression analysis. CONCLUSIONS: Compared with abstinence or problematic drinking, casual drinking was associated with less severe CV organ damage in the subclinical stages in Koreans.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/psicologia , Doenças Cardiovasculares/epidemiologia , Adulto , Idoso , Índice Tornozelo-Braço , Espessura Intima-Media Carotídea , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Análise de Onda de Pulso , República da Coreia/epidemiologia , Calcificação Vascular/epidemiologia
11.
Theranostics ; 8(14): 3891-3901, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083268

RESUMO

microRNAs (miRNAs) regulate gene expression post-transcriptionally and have been extensively tested as therapeutic molecules against several human diseases. In vivo delivery of miRNAs needs to satisfy the following conditions: safety, efficiency, and long-term therapeutic effectiveness. To satisfy these conditions, we developed a tissue-adhesive nucleotide-polymer complex (NPX-glue) for in vivo delivery of miRNAs to treat hepatocellular carcinoma (HCC). Methods: Polyallylamine (PAA), a cationic polymer, was mixed with tumor-suppressing miR-141 to form NPX and then mixed with partially oxidized alginate (OA) to form NPX-glue. Delivery efficiency of miR-141:NPX-glue was determined in cultured HCC cells and in an implanted HCC tumor model. In vivo tumor-suppressive effects of miR-141 on HCC were examined in mice upon intratumoral injection of miR-141:NPX-glue. Result: NPX-glue was generated by mixing of NPX with OA, which eliminated the inherent cytotoxic effect of NPX. NPX-glue led to the efficient delivery of miR-141 and plasmid to cultured cells and solid tumors in mice, where their expression was maintained for up to 30 days. Upon intratumoral injection of miR-141:NPX-glue, the growth of the tumors was dramatically retarded in comparison with the negative control, NCmiR:NPX-glue, (p < 0.05). Molecular examination proved miR-141:NPX-glue efficiently regulated the target genes including MAP4K4, TM4SF1, KEAP1, HDGF, and TIAM1 and finally induced apoptosis of cancer tissues. Conclusion: Here, we show that NPX-glue delivers therapeutic miR-141 to solid tumors in a safe, stable, and long-term manner and prove that locoregional treatment of HCC is possible using the NPX-glue system.


Assuntos
Antineoplásicos/administração & dosagem , Produtos Biológicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/administração & dosagem , Administração Tópica , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Poliaminas/administração & dosagem , Adesivos Teciduais/administração & dosagem , Resultado do Tratamento
12.
Mol Cell Biol ; 38(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29866653

RESUMO

Adenomatous polyposis coli (APC) is a key molecule to maintain cellular homeostasis in colonic epithelium by regulating cell-cell adhesion, cell polarity, and cell migration through activating the APC-stimulated guanine nucleotide-exchange factor (Asef). The APC-activated Asef stimulates the small GTPase, which leads to decreased cell-cell adherence and cell polarity, and enhanced cell migration. In colorectal cancers, while truncated APC constitutively activates Asef and promotes cancer initiation and progression, regulation of Asef by full-length APC is still unclear. Here, we report the autoinhibition mechanism of full-length APC. We found that the armadillo repeats in full-length APC interact with the APC residues 1362 to 1540 (APC-2,3 repeats), and this interaction competes off and inhibits Asef. Deletion of APC-2,3 repeats permits Asef interactions leading to downstream signaling events, including the induction of Golgi fragmentation through the activation of the Asef-ROCK-MLC2. Truncated APC also disrupts protein trafficking and cholesterol homeostasis by inhibition of SREBP2 activity in a Golgi fragmentation-dependent manner. Our study thus uncovers the autoinhibition mechanism of full-length APC and a novel gain of function of truncated APC in regulating Golgi structure, as well as cholesterol homeostasis, which provides a potential target for pharmaceutical intervention against colon cancers.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Mutação com Ganho de Função , Genes APC , Complexo de Golgi/metabolismo , Proteína da Polipose Adenomatosa do Colo/química , Sequência de Aminoácidos , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Colesterol/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Complexo de Golgi/patologia , Células HCT116 , Células HT29 , Homeostase , Humanos , Modelos Biológicos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Deleção de Sequência , Transdução de Sinais
13.
Sci Rep ; 7(1): 9958, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855656

RESUMO

Peroxisome-proliferator-activated receptor alpha (PPARα) and sterol regulatory element-binding protein (SREBP) play a role in regulating cellular fatty acid and cholesterol homeostasis via fatty acid oxidation and lipogenesis. The control of SREBP processing is regulated by the insulin induced gene (INSIG)2a protein, which binds SREBP to prevent SREBP translocation to the Golgi apparatus during nutrient starvation in the liver. However, the regulation of SREBP-1c processing by INSIGs during fasting and the regulatory mechanisms of the mouse Insig2a gene expression have not been clearly addressed. In the present study, we found that Insig2a was upregulated by PPARα in mouse livers and primary hepatocytes during fasting, whereas Insig2a mRNA expression was decreased in the livers of refed mice. A PPAR-responsive element between -126 bp and -114 bp in the Insig2a promoter was identified by a transient transfection assay and a chromatin immunoprecipitation assay; its role in regulation by PPARα was characterised using Pparα-null mice. These results suggest that PPARα is a trans-acting factor that enhances Insig2a gene expression, thereby suppressing SREBP-1c processing during fasting.


Assuntos
Jejum , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , PPAR alfa/metabolismo , Processamento de Proteína Pós-Traducional , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Hepatócitos/enzimologia , Fígado/enzimologia , Camundongos
15.
Biochem Biophys Res Commun ; 489(3): 299-304, 2017 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-28552526

RESUMO

Liver receptor homolog-1 (LRH-1) is a nuclear receptor that plays an important role in the regulation of bile acid biosynthesis, cholesterol reverse transport, steroidogenesis, and exocrine pancreatic enzyme production. In the current study, previously published data from a genome wide analysis of LRH-1 binding in the liver were re-analyzed to identify new LRH-1 targets and propose new roles for LRH-1 in the liver. Superoxide dismutase 2 (Sod2) was identified, which contains putative LRH-1 binding sites in the proximal promoter. When hepatocytes were treated with the LRH-1 agonist RJW101, Sod2 expression was dramatically increased and reactive oxygen species (ROS) production, which was induced by a high concentration of palmitate, was significantly reduced. A LRH-1 binding site was mapped to -288/-283 in the Sod2 promoter, which increased Sod2 promoter activity in response to LRH-1 and its agonist. LRH-1 binding to this site was confirmed using a chromatin immunoprecipitation assay. These results suggest that Sod2 is a target gene of LRH-1, and that LRH-1 agonists can mediate a reduction in ROS production and oxidative stress driven by an excess of fatty acids, as exhibited in nonalcoholic fatty liver disease.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , Hepatócitos/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Superóxido Dismutase/genética , Transcriptoma
16.
Cell Death Dis ; 8(5): e2793, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28518146

RESUMO

Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53-p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53-p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ-p53-p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression.


Assuntos
Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Tioléster Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Humanos , Células MCF-7 , Masoprocol/farmacologia , Radiação Ionizante
17.
Elife ; 62017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28244871

RESUMO

The synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for the maximal SREBP-1c expression and high rates of FA synthesis.


Assuntos
Regulação da Expressão Gênica , Receptores X do Fígado/metabolismo , Fígado/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Transcrição Gênica
18.
Endocrinol Metab (Seoul) ; 32(1): 6-10, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28116873

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with insulin resistance, obesity, and dyslipidemia. NAFLD encompasses a wide range of states from the simple accumulation of triglycerides in the hepatocytes to serious states accompanied by inflammation and fibrosis in the liver. De novo lipogenesis has been shown to be a significant factor in the development of hepatic steatosis in insulin-resistant states. Sterol regulatory element binding protein-1c (SREBP-1c) is the main transcription factor that mediates the activation of lipogenesis, and SREBP cleavage activating protein (SCAP) is required for the activation of SREBPs. Here, recent animal studies that suggest SCAP as a therapeutic target for hepatic steatosis and hypertriglyceridemia are discussed.

19.
Anim Cells Syst (Seoul) ; 21(4): 263-268, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30460077

RESUMO

Mature forms of the microRNAs miR-96, -182, and -183 originate from a single genomic locus and have been shown to be elevated approximately 50-fold in the livers of sterol regulatory element-binding protein-1a and -2 (SREBP-1a and -2) transgenic mice. Our study attempted to identify the possible targets of these microRNAs using miRNA target prediction software. This revealed putative sites in insulin-induced genes (INSIGs). The 3' untranslated region (UTR) of insulin-induced gene 1 (INSIG1) contained sites corresponding to miR-182, and -183, while the 3' UTR of INSIG2 featured an miR-96 site. Among these putative sites, only miR-96 demonstrated an inhibitory effect that was specific to the 3' UTR of INSIG2. As INSIG proteins are the main components of SREBP cleavage complexes that act to release active SREBPs, we assessed the effects of miR-96 on INSIG and SREBP levels and activities. We found that miR-96 reduced the levels of INSIG2 in INSIG1 knockout human fibroblasts, resulting in an increase in SREBP-1 and -2 nuclear forms and a subsequent increase in the abundance of the mRNA of their target genes. These results suggest that miR-96, an miRNA induced by SREBP-2 activation, regulates downstream targets of SREBPs and may increase the abundance of active SREBP.

20.
Sci Transl Med ; 8(361): 361ra140, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27798265

RESUMO

Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Terapia de Alvo Molecular , Piperidinas/farmacologia , Sulfonamidas/farmacologia , Animais , Proliferação de Células , Colesterol/química , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Genes Supressores de Tumor , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA