Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Exp Bot ; 75(3): 760-771, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37891011

RESUMO

Biological nitrogen fixation (BNF) provides a globally important input of nitrogen (N); its quantification is critical but technically challenging. Leaf reflectance spectroscopy offers a more rapid approach than traditional techniques to measure plant N concentration ([N]) and isotopes (δ15N). Here we present a novel method for rapidly and inexpensively quantifying BNF using optical spectroscopy. We measured plant [N], δ15N, and the amount of N derived from atmospheric fixation (Ndfa) following the standard traditional methodology using isotope ratio mass spectrometry (IRMS) from tissues grown under controlled conditions and taken from field experiments. Using the same tissues, we predicted the same three parameters using optical spectroscopy. By comparing the optical spectroscopy-derived results with traditional measurements (i.e. IRMS), the amount of Ndfa predicted by optical spectroscopy was highly comparable to IRMS-based quantification, with R2 being 0.90 (slope=0.90) and 0.94 (slope=1.02) (root mean square error for predicting legume δ15N was 0.38 and 0.43) for legumes grown in glasshouse and field, respectively. This novel application of optical spectroscopy facilitates BNF studies because it is rapid, scalable, low cost, and complementary to existing technologies. Moreover, the proposed method successfully captures the dynamic response of BNF to climate changes such as warming and drought.


Assuntos
Fabaceae , Fixação de Nitrogênio , Isótopos de Nitrogênio/análise , Nitrogênio , Plantas , Análise Espectral
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1891): 20220543, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37839444

RESUMO

The interplay between ambient temperature and nutrition in wild herbivores is frequently overlooked, despite the fundamental importance of food. We tested whether different ambient temperatures (10°C, 18°C and 26°C) influenced the intake of protein by a marsupial herbivore, the common brushtail possum (Trichosurus vulpecula). At each temperature, possums were offered a choice of two foods containing different amounts of protein (57% versus 8%) for one week. Animals mixed a diet with a lower proportion of protein to non-protein (P : NP, 0.20) when held at 26°C compared to that at both 10°C and 18°C (0.22). Since detoxification of plant secondary metabolites imposes a protein cost on animals, we then studied whether addition of the monoterpene 1,8-cineole to the food changed the effect of ambient temperature (10°C and 26°C) on food choice. Cineole reduced food intake but also removed the effect of temperature on P : NP ratio and instead animals opted for a diet with higher P : NP (0.19 with cineole versus 0.15 without cineole). These experiments show the proportion of P : NP chosen by animals is influenced by ambient temperature and by plant secondary metabolites. Protein is critical for reproductive success in this species and reduced protein intake caused by high ambient temperatures may limit the viability of some populations in the future. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.


Assuntos
Comportamento Alimentar , Monoterpenos , Animais , Eucaliptol , Temperatura , Dieta/veterinária , Plantas , Mamíferos
4.
Front Microbiol ; 14: 1085090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937253

RESUMO

Introduction: Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods: In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results: We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion: These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.

5.
PeerJ ; 11: e14598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710873

RESUMO

Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.


Assuntos
Microbiota , Phascolarctidae , Animais , Phascolarctidae/genética , Individualidade , RNA Ribossômico 16S/genética , Austrália
6.
Behav Ecol ; 33(5): 1007-1017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382228

RESUMO

Research on use of foraging patches has focused on why herbivores visit or quit patches, yet little is known about visits to patches over time. Food quality, as reflected by higher nutritional quality and lower plant defenses, and physical patch characteristics, which offer protection from predators and weather, affect patch use and hence should influence their revisitation. Due to the potentially high costs of moving between patches, fragmented habitats are predicted to complicate foraging decisions of many animals. We aimed to determine how food quality, shelter availability and habitat fragmentation influence tree reuse by a specialist folivore, the koala, in a fragmented agricultural landscape. We GPS-tracked 23 koalas in northern New South Wales, Australia and collated number of revisits, average residence time, and average time-to-return to each tree. We measured tree characteristics including food quality (foliar nitrogen and toxic formylated phloroglucinol compounds, FPCs concentrations), tree size, and tree connectedness. We also modeled the costs of locomotion between trees. Koalas re-visited isolated trees with high leaf nitrogen disproportionately often. They spent longer time in trees with high leaf nitrogen, and in large trees used for shelter. They took longer to return to trees with low leaf nitrogen. Tree connectivity reduced travel costs between patches, being either individual or groups of trees. FPC levels had no detectable effect on patch revisitation. We conclude that food quality and shelter drive koala tree re-visits. Scattered, isolated trees with nutrient-rich leaves are valuable resource patches for koalas despite movement costs to reach them.

7.
J Am Med Inform Assoc ; 30(1): 132-138, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36228116

RESUMO

Thoughtful integration of interruptive clinical decision support (CDS) alerts within the electronic health record is essential to guide clinicians on the application of pharmacogenomic results at point of care. St. Jude Children's Research Hospital implemented a preemptive pharmacogenomic testing program in 2011 in a multidisciplinary effort involving extensive education to clinicians about pharmacogenomic implications. We conducted a retrospective analysis of clinicians' adherence to 4783 pharmacogenomically guided CDS alerts that triggered for 12 genes and 60 drugs. Clinicians adhered to the therapeutic recommendations provided in 4392 alerts (92%). In our population of pediatric patients with catastrophic illnesses, the most frequently presented gene/drug CDS alerts were TPMT/NUDT15 and thiopurines (n = 3850), CYP2D6 and ondansetron (n = 667), CYP2D6 and oxycodone (n = 99), G6PD and G6PD high-risk medications (n = 51), and CYP2C19 and proton pump inhibitors (omeprazole and pantoprazole; n = 50). The high adherence rate was facilitated by our team approach to prescribing and our collaborative CDS design and delivery.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Humanos , Criança , Farmacogenética/métodos , Citocromo P-450 CYP2D6/genética , Estudos Retrospectivos , Registros Eletrônicos de Saúde
8.
Proc Natl Acad Sci U S A ; 119(33): e2122680119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943984

RESUMO

Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.


Assuntos
Retrovirus Endógenos , Evolução Molecular , Gammaretrovirus , Phascolarctidae , Animais , Retrovirus Endógenos/genética , Gammaretrovirus/genética , Variação Genética , New South Wales , Phascolarctidae/virologia , Infecções por Retroviridae/transmissão , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia , Vitória
9.
Front Plant Sci ; 13: 836968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321443

RESUMO

Shifts in the timing, intensity and/or frequency of climate extremes, such as severe drought and heatwaves, can generate sustained shifts in ecosystem function with important ecological and economic impacts for rangelands and managed pastures. The Pastures and Climate Extremes experiment (PACE) in Southeast Australia was designed to investigate the impacts of a severe winter/spring drought (60% rainfall reduction) and, for a subset of species, a factorial combination of drought and elevated temperature (ambient +3°C) on pasture productivity. The experiment included nine common pasture and Australian rangeland species from three plant functional groups (C3 grasses, C4 grasses and legumes) planted in monoculture. Winter/spring drought resulted in productivity declines of 45% on average and up to 74% for the most affected species (Digitaria eriantha) during the 6-month treatment period, with eight of the nine species exhibiting significant yield reductions. Despite considerable variation in species' sensitivity to drought, C4 grasses were more strongly affected by this treatment than C3 grasses or legumes. Warming also had negative effects on cool-season productivity, associated at least partially with exceedance of optimum growth temperatures in spring and indirect effects on soil water content. The combination of winter/spring drought and year-round warming resulted in the greatest yield reductions. We identified responses that were either additive (Festuca), or less-than-additive (Medicago), where warming reduced the magnitude of drought effects. Results from this study highlight the sensitivity of diverse pasture species to increases in winter and spring drought severity similar to those predicted for this region, and that anticipated benefits of cool-season warming are unlikely to be realized. Overall, the substantial negative impacts on productivity suggest that future, warmer, drier climates will result in shortfalls in cool-season forage availability, with profound implications for the livestock industry and natural grazer communities.

10.
Environ Microbiol ; 24(9): 4209-4219, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35018700

RESUMO

In this study we compared the faecal microbiomes of wild joey koalas (Phascolarctos cinereus) to those of adults, including their mothers, to establish whether gut microbiome maturation and inheritance in the wild is comparable to that seen in captivity. Our findings suggest that joey koala microbiomes slowly shift towards an adult assemblage between 6 and 12 months of age, as the microbiomes of 9-month-old joeys were more similar to those of adults than those of 7-month-olds, but still distinct. At the phylum level, differences between joeys and adults were broadly consistent with those in captivity, with Firmicutes increasing in relative abundance over the joeys' development and Proteobacteria decreasing. Of the fibre-degrading genes that increased in abundance over the development of captive joeys, those involved in hemicellulose and cellulose degradation, but not pectin degradation, were also generally found in higher abundance in adult wild koalas compared to 7-month-olds. Greater maternal inheritance of the faecal microbiome was seen in wild than in captive koalas, presumably due to the more solitary nature of wild koalas. This strong maternal inheritance of the gut microbiome could contribute to the development of localized differences in microbiome composition, population health and diet through spatial clustering of relatives.


Assuntos
Microbioma Gastrointestinal , Microbiota , Phascolarctidae , Animais , Celulose , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Microbiota/genética , Phascolarctidae/microbiologia
11.
Environ Microbiol ; 24(1): 475-493, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863030

RESUMO

The acquisition and maturation of the gastrointestinal microbiome is a crucial aspect of mammalian development, particularly for specialist herbivores such as the koala (Phascolarctos cinereus). Joey koalas are thought to be inoculated with microorganisms by feeding on specialized maternal faeces (pap). We found that compared to faeces, pap has higher microbial density, higher microbial evenness and a higher proportion of rare taxa, which may facilitate the establishment of those taxa in joey koalas. We show that the microbiomes of captive joey koalas were on average more similar to those of their mothers than to other koalas, indicating strong maternal inheritance of the faecal microbiome, which can lead to intergenerational gut dysbiosis when the mother is ill. Directly after pap feeding, the joey koalas' microbiomes were enriched for milk-associated bacteria including Bacteroides fragilis, suggesting a conserved role for this species across mammalian taxa. The joeys' microbiomes then changed slowly over 5 months to resemble those of adults by 1 year of age. The relative abundance of fibrolytic bacteria and genes involved in the degradation of plant cell walls also increased in the infants over this time, likely in response to an increased proportion of Eucalyptus leaves in their diets.


Assuntos
Eucalyptus , Microbioma Gastrointestinal , Microbiota , Phascolarctidae , Animais , Microbioma Gastrointestinal/genética , Humanos , Herança Materna , Microbiota/genética , Phascolarctidae/metabolismo , Phascolarctidae/microbiologia
12.
Oecologia ; 196(3): 795-803, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142232

RESUMO

The diets of individual animals within populations can differ, but few studies determine whether this is due to fundamental differences in preferences or capacities to eat specific foods, or to external influences such as dominance hierarchies or spatial variation in food availability. The distinction is important because different drivers of dietary specialisation are likely to have different impacts on the way in which animal populations respond to, for example, habitat modification. We used a captive feeding study to investigate the mechanisms driving individual dietary specialisation in a population of wild koalas (Phascolarctos cinereus) in which individuals predominantly ate either Eucalyptus viminalis or Eucalyptus obliqua foliage. All six koalas that primarily ate E. viminalis in the wild avoided eating E. obliqua for more than 1 month in captivity. In contrast, all seven koalas that primarily ate E. obliqua could be maintained exclusively on this species in captivity, although they ate less from individual trees with higher foliar concentrations of unsubstituted B-ring flavanones (UBFs). Our results show that fundamental differences between individual animals allow some to exploit food resources that are less suitable for others. This could reduce competition for food, increase habitat carrying capacity, and is also likely to buffer the population against extinction in the face of habitat modification. The occurrence of fundamental individual specialisation within animal populations could also affect the perceived conservation value of different habitats, translocation or reintroduction success, and population dynamics. It should therefore be further investigated in other mammalian herbivore species.


Assuntos
Eucalyptus , Phascolarctidae , Animais , Dieta , Ecossistema , Árvores
13.
Ecol Evol ; 11(9): 4826-4842, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976851

RESUMO

For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling's mycorrhizal community.While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling's terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.

14.
Ecol Evol ; 11(24): 18401-18421, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003680

RESUMO

Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high-resolution multispectral imagery, collected by a lightweight and low-cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand-scale from leaf-scale chemistry measurements across a gradient of mixed-species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50-1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross-validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia.

15.
Trends Plant Sci ; 26(2): 99-101, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199260

RESUMO

Silicon accumulation is a key defence against herbivorous pests, but may have wider detrimental impacts if plants become unpalatable for livestock. We argue that some herbivores are better adapted to silicon-rich diets than others; herbivore anatomy and physiology, and the nature of silicon deposition, are crucial to understanding these differences.


Assuntos
Herbivoria , Silício , Plantas
16.
Nature ; 580(7802): 227-231, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269351

RESUMO

Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1-5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3-5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7-10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7-11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Biomassa , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Aquecimento Global/prevenção & controle , Modelos Biológicos , New South Wales , Fotossíntese , Solo/química , Árvores/crescimento & desenvolvimento
17.
Nucleic Acids Res ; 48(D1): D689-D695, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31598706

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of interfaces to genomic data across the tree of life, including reference genome sequence, gene models, transcriptional data, genetic variation and comparative analysis. Data may be accessed via our website, online tools platform and programmatic interfaces, with updates made four times per year (in synchrony with Ensembl). Here, we provide an overview of Ensembl Genomes, with a focus on recent developments. These include the continued growth, more robust and reproducible sets of orthologues and paralogues, and enriched views of gene expression and gene function in plants. Finally, we report on our continued deeper integration with the Ensembl project, which forms a key part of our future strategy for dealing with the increasing quantity of available genome-scale data across the tree of life.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Variação Genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Algoritmos , Animais , Caenorhabditis elegans/genética , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo , Plantas/genética , Valores de Referência , Software , Interface Usuário-Computador
18.
Heart Lung Circ ; 29(1): 5-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31735685

RESUMO

The Fontan circulation describes the circulatory state resulting from an operation in congenital heart disease where systemic venous return is directed to the lungs without an intervening active pumping chamber. As survival increases, so too does recognition of the potential health challenges. This document aims to allow clinicians, people with a Fontan circulation, and their families to benefit from consensus agreement about management of the person with a Fontan circulation. The document was crafted with input from a multidisciplinary group of health care providers as well as individuals with a Fontan circulation and families. It is hoped that the shared common vision of long-term wellbeing will continue to drive improvements in care and quality of life in this patient population and eventually translate into improved survival. KEYPOINTS.


Assuntos
Cardiopatias Congênitas/mortalidade , Cardiopatias Congênitas/terapia , Sistema de Registros , Austrália/epidemiologia , Humanos , Nova Zelândia/epidemiologia , Sociedades Médicas
19.
J Chem Ecol ; 45(9): 798-807, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31422515

RESUMO

The koala is a specialist feeder with a diet consisting almost exclusively of potentially toxic eucalypt leaves. Monoterpenes, an abundant class of plant secondary metabolites in eucalypts, are highly lipophilic. Chronic absorption and systemic exposure can be anticipated for the koala, causing health effects in various ways when consumed in high amounts, but particularly causing alterations in immune function in this species. Therefore, careful leaf selection, efficient detoxification pathways, and other specialist adaptations are required to protect animals from acute intoxication. This is the first paper providing insight into the systemic exposure of koalas to these compounds. Profiles of six selected major monoterpenes were investigated in the ingesta of deceased koalas from four different regions of NSW and South-East Queensland. Concentrations of the same compounds were measured in lymphoid tissues of deceased koalas and in the blood of live koalas from other regions of NSW. Analytical methods included liquid extraction and solid-phase micro-extraction, followed by gas-chromatography/ mass-spectrometry. Concentrations in the ingesta of individual animals vary remarkably, though the average proportions of individual monoterpenes in the ingesta of animals from the four different regions are highly comparable. Blood concentrations of the selected monoterpenes also varied considerably. The highest blood concentrations were found for 1,8-cineole, up to 971 ng/ml. There was similarity between circulating monoterpene profiles and ingesta profiles. Based on the observed lack of similarity between blood and lymph tissue concentrations, individual monoterpenes either exhibit different affinities for lymphatic tissue compared to blood or their accumulation in blood and lymph tissue differs temporally. In general, blood monoterpene concentrations found in koalas were low compared to those reported in other marsupial eucalypt feeders, but significant concentrations of monoterpenes were detected in all samples analysed. This data on blood and lymphatic tissue monoterpene concentrations builds the fundamental groundwork for future research into the effects of dietary monoterpenes on various biological processes of specialist herbivores and into the significance of these animals' metabolic and behavioural strategies for coping with these compounds. We have shown that the systemic exposure of koalas to potentially anti-inflammatory eucalypt monoterpenes is continuous, and we provide data on physiological concentrations which will allow realistic future studies of the effects of monoterpenes on immune cell function.


Assuntos
Eucalyptus/química , Monoterpenos/química , Phascolarctidae/metabolismo , Folhas de Planta/química , Animais , Austrália , Comportamento Alimentar , Monoterpenos/metabolismo , Phascolarctidae/fisiologia
20.
Biol Lett ; 15(7): 20190361, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362610

RESUMO

Plants have evolved numerous herbivore defences that are resistance- or tolerance-based. Resistance involves physical and chemical traits that deter and/or harm herbivores whereas tolerance minimizes fitness costs of herbivory, often via compensatory growth. The Poaceae frequently accumulate large amounts of silicon (Si), which can be used for herbivore resistance, including biomechanical and (indirectly) biochemical defences. To date, it is unclear whether Si improves tolerance of herbivory. Here we report how Si enabled a cereal (Triticum aestivum) to tolerate damage inflicted by above- and belowground herbivores. Leaf herbivory increased Si concentrations in the leaves by greater than 50% relative to herbivore-free plants, indicating it was an inducible defensive response. In plants without Si supplementation, leaf herbivory reduced shoot biomass by 52% and root herbivory reduced root biomass by 68%. Si supplementation, however, facilitated compensatory growth such that shoot losses were more than compensated for (+14% greater than herbivore-free plants) and root losses were minimized to -16%. Si supplementation did not improve plant resistance since Si did not enhance biomechanical resistance (i.e. force of fracture) or reduce leaf consumption and herbivore relative growth rates. We propose that Si-based defence operates in wheat via tolerance either in addition or as an alternative to resistance-based defence.


Assuntos
Herbivoria , Silício , Biomassa , Folhas de Planta , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA