Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Phys Rev Lett ; 133(7): 070401, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213567

RESUMO

Quantum circuits utilizing measurement to evolve a quantum wave function offer a new and rich playground to engineer unconventional entanglement dynamics. Here, we introduce a hybrid, nonreciprocal setup featuring a quantum circuit, whose updates are conditioned on the state of a classical dynamical agent. In our example the circuit is represented by a Majorana quantum chain controlled by a classical N-state Potts chain undergoing pair flips. The local orientation of the classical spins controls whether randomly drawn local measurements on the quantum chain are allowed or not. This imposes a dynamical kinetic constraint on the entanglement growth, described by the transfer matrix of an N-colored loop model. It yields an equivalent description of the circuit by an SU(N)-symmetric Temperley-Lieb Hamiltonian or by a kinetically constrained surface growth model for an N-component height field. For N=2, we find a diffusive growth of the half-chain entanglement toward a stationary profile S(L)∼L^{1/2} for L sites. For N≥3, the kinetic constraints impose Hilbert space fragmentation, yielding subdiffusive growth toward S(L)∼L^{0.57}. This showcases how the control by a classical dynamical agent can enrich the entanglement dynamics in quantum circuits, paving a route toward novel entanglement dynamics in nonreciprocal hybrid circuit architectures.

2.
Nature ; 627(8002): 73-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418887

RESUMO

By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.

3.
Phys Rev Lett ; 131(10): 106501, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739353

RESUMO

When a system is swept through a quantum critical point, the quantum Kibble-Zurek mechanism makes universal predictions for quantities such as the number and energy of excitations produced. This mechanism is now being used to obtain critical exponents on emerging quantum computers and emulators, which in some cases can be compared to matrix product state (MPS) numerical studies. However, the mechanism is modified when the divergence of entanglement entropy required for a faithful description of many quantum critical points is not fully captured by the experiment or classical calculation. In this Letter, we study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement, using conformally invariant critical points described approximately by a MPS as an example. We derive that the effect of finite entanglement on a Kibble-Zurek process is captured by a dimensionless scaling function of the ratio of two length scales, one determined dynamically and one by the entanglement restriction. Numerically we confirm first that dynamics at finite bond dimension χ is independent of the algorithm chosen, then obtain scaling collapses for sweeps in the transverse field Ising model and the three-state Potts model. Our result establishes the precise role played by entanglement in time-dependent critical phenomena and has direct implications for quantum state preparation and classical simulation of quantum states.

4.
BJA Educ ; 22(11): 432-439, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36304913
5.
Anaesthesia ; 77(9): 991-998, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35837762

RESUMO

Residual neuromuscular blockade is associated with significant morbidity. It has been widely studied in anaesthesia; however, the incidence of residual neuromuscular blockade in patients managed in the ICU is unknown. We conducted a prospective observational study in a tertiary ICU to determine the incidence of residual neuromuscular blockade using quantitative accelerographic monitoring. We tested for residual neuromuscular blockade (defined as a train-of-four ratio < 0.9) before cessation of sedation in anticipation of tracheal extubation. We also surveyed 16 other ICUs in New Zealand to determine their use of neuromuscular monitoring. A total of 191 patients were included in the final analysis. The incidence (95%CI) of residual neuromuscular blockade was 43% (36-50%), with a similar incidence observed in non-postoperative and postoperative patients. There was a lower risk of residual neuromuscular blockade with atracurium than rocuronium (risk ratio (95%CI) of 0.39 (0.12-0.78)) and a higher risk with pancuronium than rocuronium (1.59 (1.06-2.49)). Our survey shows that, in New Zealand ICUs, monitoring of neuromuscular function is rarely carried out before tracheal extubation. When neuromuscular monitoring is undertaken, it is based on individual clinician suspicion and performed using qualitative measurements. No ICU reported using a quantitative monitor or a clinical guideline. The results demonstrate a high incidence of residual neuromuscular blockade in our ICU patients and identify the type of neuromuscular blocking drug as a possible risk factor. Monitoring neuromuscular function before tracheal extubation is not currently the standard of care in New Zealand ICUs. These data suggest that residual neuromuscular blockade may be an under-recognised problem in ICU practice.


Assuntos
Recuperação Demorada da Anestesia , Bloqueio Neuromuscular , Fármacos Neuromusculares não Despolarizantes , Recuperação Demorada da Anestesia/induzido quimicamente , Recuperação Demorada da Anestesia/epidemiologia , Humanos , Bloqueio Neuromuscular/métodos , Monitoração Neuromuscular , Fármacos Neuromusculares não Despolarizantes/efeitos adversos , Rocurônio/efeitos adversos
6.
Nat Commun ; 13(1): 3000, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637177

RESUMO

The ferromagnetic phase of Co3Sn2S2 is widely considered to be a topological Weyl semimetal, with evidence for momentum-space monopoles of Berry curvature from transport and spectroscopic probes. As the bandstructure is highly sensitive to the magnetic order, attention has focused on anomalies in magnetization, susceptibility and transport measurements that are seen well below the Curie temperature, leading to speculation that a "hidden" phase coexists with ferromagnetism. Here we report spatially-resolved measurements by Kerr effect microscopy that identify this phase. We find that the anomalies coincide with a deep minimum in domain wall (DW) mobility, indicating a crossover between two regimes of DW propagation. We demonstrate that this crossover is a manifestation of a 2D phase transition that occurs within the DW, in which the magnetization texture changes from continuous rotation to unidirectional variation. We propose that the existence of this 2D transition deep within the ferromagnetic state of the bulk is a consequence of a giant quality factor for magnetocrystalline anisotropy unique to this compound. This work broadens the horizon of the conventional binary classification of DWs into Bloch and Néel walls, and suggests new strategies for manipulation of domain walls and their role in electron and spin transport.

9.
Lett Appl Microbiol ; 74(1): 2-7, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34695222

RESUMO

It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID-19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS-CoV-2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml-1 black tea extract and two-fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml-1 , green tea extracts showed more antiviral activity against SARS-CoV-2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS-CoV-2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.


Assuntos
COVID-19 , Camellia sinensis , Catequina , Antivirais/farmacologia , Humanos , SARS-CoV-2 , Chá
10.
Nature ; 597(7874): 45-50, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471276

RESUMO

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws1-7. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent 'classical' properties of a system (for example, diffusivity, viscosity and compressibility) from a generic microscopic quantum Hamiltonian7-14. Here we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometre length scales. In particular, the combination of positional disorder and on-site random fields leads to diffusive dynamics that are Fickian yet non-Gaussian15-20. Finally, by tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient. Our work enables the investigation of hydrodynamics in many-body quantum spin systems.

12.
Lett Appl Microbiol ; 73(4): 400-407, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34219247

RESUMO

Antimicrobial resistance (AMR) has now emerged as a global public health crisis, requiring the discovery of new and novel antimicrobial compounds, that may be precursors of future therapeutic antibiotics. Chinese Herbal Medicine (CHM) comes with a rich pedigree of holistic and empirical usage in Asia for the last 5000 years. Extracts of Anemarrhena asphodeloides Bunge, Angelica sinensis (Oliv.) Diels, Dianthus superbus L. Forsythiae fructus (Lian Qiao), Lonicerae flos (Jin Yin Hua), Naemorhedi cornu, Platycladus orientalis Franco, Polygonum aviculare, Polygonum cuspidatum, Poria cocos (Schw.), Rehmannia glutinosa (Gaertn.) DC, Rheum palmatum, Salvia miltiorrhiza Bunge, Scutellaria barbata, Scutellariae radix (Huang Qin) and Ursi fel (Xiong Dan) have shown to have antimicrobial properties against clinically significant Gram-negative and Gram-positive bacterial pathogens, as well as the mycobacteria (TB and non-tuberculous mycobacteria). Evidence is now beginning to emerge through systematic reviews of the outcomes of clinical studies employing CHM to treat infections. Of the 106 Cochrane systematic reviews on CHM, 16 (ca 15%) reviews examine CHM in the context of treating a specific infection disease or state. This update examines direct antimicrobial effect of CHM on bacterial pathogens, as well as synergistic effects of combining CHM with conventional antibiotics.


Assuntos
Anti-Infecciosos , Medicamentos de Ervas Chinesas , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Frutas
13.
Br J Biomed Sci ; 78(4): 167-176, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33751908

RESUMO

Invasive fungal disease continues to be a cause of significant life-threatening morbidity and mortality in humans, particularly in those with a diminished immune system, such as with haematological malignancies. The mainstay of treating such life-threatening fungal infection has been antifungal drugs, including azoles, echinocandins and macrocyclic polyenes. However, like antibiotic resistance, antifungal resistance is beginning to emerge, potentially jeopardizing the effectiveness of these molecules in the treatment of fungal disease. One strategy to avoid this is the development of fungal vaccines. However, the inability to provoke a sufficient immune response in the most vulnerable immunocompromised groups has hindered translation from bench to bedside. This review will assess the latest available data and will investigate potential Aspergillus antigens and feasible vaccine techniques, particularly for vaccination of high-risk groups, including immunocompromised and immunosuppressed populations.


Assuntos
Vacinas Fúngicas , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis , Farmacorresistência Fúngica , Equinocandinas , Humanos , Micoses/tratamento farmacológico , Micoses/prevenção & controle
16.
Sci Adv ; 6(29): eaba0509, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832618

RESUMO

Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is a topological invariant known as the Berry monopole charge. The circular photogalvanic effect (CPGE), whereby circular polarized light generates a helicity-dependent photocurrent, is a notable example of a macroscopic property that emerges directly from the topology of the Weyl semimetal band structure. Recently, it was predicted that the amplitude of the CPGE associated with optical transitions near a Weyl node is proportional to its monopole charge. In chiral Weyl systems, nodes of opposite charge are nondegenerate, opening a window of wavelengths where the CPGE resulting from uncompensated Berry charge can emerge. Here, we report measurements of CPGE in the chiral Weyl semimetal RhSi, revealing a CPGE response in an energy window that closes at 0.65 eV, in agreement with the predictions of density functional theory.

17.
Lett Appl Microbiol ; 71(5): 506-509, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745274

RESUMO

There have been numerous reports in the literature describing the diversity of microbial flora isolated from woodwind and brass instruments, with potential infection risks for players, especially when such instruments are shared. Steam disinfection has become established as a trusted method of decontamination; however, there have been no reports on the employment of this technology to disinfect parts of musical instruments, hence it was the aim of this study to examine the fate of bacterial and yeast pathogens on artificially contaminated trumpet mouthpieces and to evaluate whether such disinfection is an effective method of disinfection for such instrument parts. Trumpet mouthpieces were artificially contaminated with 18 microbial strains (17 bacteria from four genera (Enterococcus, Escherichia, Staphylococcus and Streptococcus) and one yeast (Candida)), each at an inoculum density of approximately 1·5 × 107 colony forming units and subjected to a disinfection cycle. The experiment was repeated including 50% (v/v) sterile sputum as soil. No bacteria or yeast organisms were recovered post disinfection, including following recovery and with nonselective cultural enrichment techniques.


Assuntos
Bactérias/isolamento & purificação , Candida/isolamento & purificação , Desinfecção/métodos , Contaminação de Equipamentos/prevenção & controle , Vapor , Enterococcus/isolamento & purificação , Equipamentos e Provisões/microbiologia , Escherichia/isolamento & purificação , Humanos , Música , Staphylococcus/isolamento & purificação , Streptococcus/isolamento & purificação
20.
Science ; 366(6471): 1349-1354, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831662

RESUMO

Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging of both stress fields and magnetism as a function of pressure and temperature. We quantify all normal and shear stress components and demonstrate vector magnetic field imaging, enabling measurement of the pressure-driven [Formula: see text] phase transition in iron and the complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality using noise spectroscopy enables the characterization of phase transitions even in the absence of static magnetic signatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA