Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
2.
EMBO Rep ; 25(1): 198-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177908

RESUMO

The primary cilium is a critical sensory organelle that is built of axonemal microtubules ensheathed by a ciliary membrane. In polarized epithelial cells, primary cilia reside on the apical surface and must extend these microtubules directly into the extracellular space and remain a stable structure. However, the factors regulating cross-talk between ciliation and cell polarization, as well as axonemal microtubule growth and stabilization in polarized epithelia, are not fully understood. In this study, we find TTLL12, a previously uncharacterized member of the Tubulin Tyrosine Ligase-Like (TTLL) family, localizes to the base of primary cilia and is required for cilia formation in polarized renal epithelial cells. We also show that TTLL12 directly binds to the α/ß-tubulin heterodimer in vitro and regulates microtubule dynamics, stability, and post-translational modifications (PTMs). While all other TTLLs catalyze the addition of glutamate or glycine to microtubule C-terminal tails, TTLL12 uniquely affects tubulin PTMs by promoting both microtubule lysine acetylation and arginine methylation. Together, this work identifies a novel microtubule regulator and provides insight into the requirements for apical extracellular axoneme formation.


Assuntos
Cílios , Tubulina (Proteína) , Cílios/metabolismo , Tubulina (Proteína)/metabolismo , Axonema/metabolismo , Microtúbulos/metabolismo , Células Epiteliais/metabolismo
3.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37675603

RESUMO

Across eukaryotic genomes, multiple α- and ß-tubulin genes require regulation to ensure sufficient production of tubulin heterodimers. Features within these gene families that regulate expression remain underexplored. Here, we investigate the role of the 5' intron in regulating α-tubulin expression in Saccharomyces cerevisiae. We find that the intron in the α-tubulin, TUB1, promotes α-tubulin expression and cell fitness during microtubule stress. The role of the TUB1 intron depends on proximity to the TUB1 promoter and sequence features that are distinct from the intron in the alternative α-tubulin isotype, TUB3. These results lead us to perform a screen to identify genes that act with the TUB1 intron. We identified several genes involved in chromatin remodeling, α/ß-tubulin heterodimer assembly, and the spindle assembly checkpoint. We propose a model where the TUB1 intron promotes expression from the chromosomal locus and that this may represent a conserved mechanism for tubulin regulation under conditions that require high levels of tubulin production.


Assuntos
Proteínas de Saccharomyces cerevisiae , Tubulina (Proteína) , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Íntrons , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Biomolecules ; 13(6)2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37371519

RESUMO

Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well-developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite the development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes, and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that are solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae, with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.


Assuntos
Microtúbulos , Saccharomyces cerevisiae , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Software
5.
bioRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798368

RESUMO

Fluorescently labeled proteins absorb and emit light, appearing as Gaussian spots in fluorescence imaging. When fluorescent tags are added to cytoskeletal polymers such as microtubules, a line of fluorescence and even non-linear structures results. While much progress has been made in techniques for imaging and microscopy, image analysis is less well developed. Current analysis of fluorescent microtubules uses either manual tools, such as kymographs, or automated software. As a result, our ability to quantify microtubule dynamics and organization from light microscopy remains limited. Despite development of automated microtubule analysis tools for in vitro studies, analysis of images from cells often depends heavily on manual analysis. One of the main reasons for this disparity is the low signal-to-noise ratio in cells, where background fluorescence is typically higher than in reconstituted systems. Here, we present the Toolkit for Automated Microtubule Tracking (TAMiT), which automatically detects, optimizes and tracks fluorescent microtubules in living yeast cells with sub-pixel accuracy. Using basic information about microtubule organization, TAMiT detects linear and curved polymers using a geometrical scanning technique. Images are fit via an optimization problem for the microtubule image parameters that is solved using non-linear least squares in Matlab. We benchmark our software using simulated images and show that it reliably detects microtubules, even at low signal-to-noise ratios. Then, we use TAMiT to measure monopolar spindle microtubule bundle number, length, and lifetime in a large dataset that includes several S. pombe mutants that affect microtubule dynamics and bundling. The results from the automated analysis are consistent with previous work, and suggest a direct role for CLASP/Cls1 in bundling spindle microtubules. We also illustrate automated tracking of single curved astral microtubules in S. cerevisiae , with measurement of dynamic instability parameters. The results obtained with our fully-automated software are similar to results using hand-tracked measurements. Therefore, TAMiT can facilitate automated analysis of spindle and microtubule dynamics in yeast cells.

6.
J Cell Biol ; 222(3)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36719400

RESUMO

How cells regulate α- and ß-tubulin to meet the demand for αß-heterodimers and avoid consequences of monomer imbalance is not understood. We investigate the role of gene copy number and how shifting expression of α- or ß-tubulin genes impacts tubulin proteostasis and microtubule function in Saccharomyces cerevisiae. We find that α-tubulin gene copy number is important for maintaining excess α-tubulin protein compared to ß-tubulin protein. Excess α-tubulin prevents accumulation of super-stoichiometric ß-tubulin, which leads to loss of microtubules, formation of non-microtubule assemblies of tubulin, and disrupts cell proliferation. In contrast, sub-stoichiometric ß-tubulin or overexpression of α-tubulin has minor effects. We provide evidence that yeast cells equilibrate α-tubulin protein concentration when α-tubulin isotype expression is increased. We propose an asymmetric relationship between α- and ß-tubulins, in which α-tubulins are maintained in excess to supply αß-heterodimers and limit the accumulation of ß-tubulin monomers.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Tubulina (Proteína)/metabolismo , Isoformas de Proteínas/metabolismo , Dosagem de Genes
7.
Front Cell Neurosci ; 16: 1023267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406756

RESUMO

Heterozygous, missense mutations in both α- and ß-tubulin genes have been linked to an array of neurodevelopment disorders, commonly referred to as "tubulinopathies." To date, tubulinopathy mutations have been identified in three ß-tubulin isotypes and one α-tubulin isotype. These mutations occur throughout the different genetic domains and protein structures of these tubulin isotypes, and the field is working to address how this molecular-level diversity results in different cellular and tissue-level pathologies. Studies from many groups have focused on elucidating the consequences of individual mutations; however, the field lacks comprehensive models for the molecular etiology of different types of tubulinopathies, presenting a major gap in diagnosis and treatment. This review highlights recent advances in understanding tubulin structural dynamics, the roles microtubule-associated proteins (MAPs) play in microtubule regulation, and how these are inextricably linked. We emphasize the value of investigating interactions between tubulin structures, microtubules, and MAPs to understand and predict the impact of tubulinopathy mutations at the cell and tissue levels. Microtubule regulation is multifaceted and provides a complex set of controls for generating a functional cytoskeleton at the right place and right time during neurodevelopment. Understanding how tubulinopathy mutations disrupt distinct subsets of those controls, and how that ultimately disrupts neurodevelopment, will be important for establishing mechanistic themes among tubulinopathies that may lead to insights in other neurodevelopment disorders and normal neurodevelopment.

8.
Curr Biol ; 32(18): R960-R962, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36167046

RESUMO

Microtubule networks are thought to be controlled by an elaborate program of tubulin posttranslational modifications and proteins that selectively bind to modified states. A new study identifies proteins that bind tyrosinated tubulin, revealing a novel recognition mechanism.


Assuntos
Microtúbulos , Tubulina (Proteína) , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/metabolismo
9.
Elife ; 112022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35511030

RESUMO

Heterozygous, missense mutations in α- or ß-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation's impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.


Proteins are molecules made up of long chains of building blocks called amino acids. When a mutation changes one of these amino acids, it can lead to the protein malfunctioning, which can have many effects at the cell and tissue level. Given that human proteins are made up of 20 different amino acids, each building block in a protein could mutate to any of the other 19 amino acids, and each mutations could have different effects. Tubulins are proteins that form microtubules, thin tubes that help give cells their shape and allow them to migrate. These proteins are added or removed to microtubules depending on the cell's needs, meaning that microtubules can grow or shrink depending on the situation. Mutations in the tubulin proteins have been linked to malformations of varying severities involving the formation of ridges and folds on the surface of the brain, including lissencephaly, pachygyria or polymicrogyria. Hoff et al. wanted to establish links between tubulin mutations and the effects observed at both cell and tissue level in the brain. They focused on two mutations in the tubulin protein TUBA1A that affect the amino acid in position 409 in the protein, which is normally a valine. One of the mutations turns this valine into an amino acid called isoleucine. This mutation is associated with pachygyria, which leads to the brain developing few ridges that are broad and flat. The second mutation turns the valine into an alanine, and is linked to lissencephaly, a more severe condition in which the brain develops no ridges, appearing smooth. Hoff et al. found that both mutations interfere with the development of the brain by stopping neurons from migrating properly, which prevents them from forming the folds in the brain correctly. At the cellular level, the mutations lead to tubulins becoming harder to remove from microtubules, making microtubules more stable than usual. This results in longer microtubules that are harder for the cell to shorten or destroy as needed. Additionally, Hoff et al. showed that the mutant versions of TUBA1A have weaker interactions with a protein called XMAP215, which controls the addition of tubulin to microtubules. This causes the microtubules to grow uncontrollably. Hoff et al. also established that the magnitude of the effects of each mutation on microtubule growth scale with the severity of the disorder they cause. Specifically, cells in which TUBA1A is not mutated have microtubules that grow at a normal rate, and lead to typical brain development. Meanwhile, cells carrying the mutation that turns a valine into an alanine, which is linked to the more severe condition lissencephaly, have microtubules that grow very fast. Finally, cells in which the valine is mutated to an isoleucine ­ the mutation associated with the less severe malformation pachygyria ­ have microtubules that grow at an intermediate rate. These findings provide a link between mutations in tubulin proteins and larger effects on cell movement that lead to brain malformations. Additionally, they also link the severity of the malformation to the severity of the microtubule defect caused by each mutation. Further work could examine whether microtubule stabilization is also seen in other similar diseases, which, in the long term, could reveal ways to detect and treat these illnesses.


Assuntos
Lisencefalia , Tubulina (Proteína) , Animais , Humanos , Lisencefalia/genética , Camundongos , Proteínas Associadas aos Microtúbulos , Microtúbulos/metabolismo , Neurogênese , Neurônios/metabolismo , Ratos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Tubulina (Proteína)/metabolismo
10.
Front Cell Dev Biol ; 9: 765992, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869359

RESUMO

Mutations in the family of genes encoding the tubulin subunits of microtubules are associated with a spectrum of human brain malformations known as tubulinopathies. How these mutations impact tubulin activity to give rise to distinct developmental consequences is poorly understood. Here we report two patients exhibiting brain malformations characteristic of tubulinopathies and heterozygous T178M missense mutations in different ß-tubulin genes, TUBB2A or TUBB3. RNAseq analysis indicates that both TUBB2A and TUBB3 are expressed in the brain during development, but only TUBB2A maintains high expression in neurons into adulthood. The T178 residue is highly conserved in ß-tubulins and located in the exchangeable GTP-binding pocket of ß-tubulin. To determine the impact of T178M on ß-tubulin function we created an analogous mutation in the ß-tubulin of budding yeast and show that the substitution acts dominantly to produce kinetically stabilized microtubules that assemble and disassemble slowly, with fewer transitions between these states. In vitro experiments with purified mutant tubulin demonstrate that T178M decreases the intrinsic assembly activity of ß-tubulin and forms microtubules that rarely transition to disassembly. We provide evidence that the T178M substitution disrupts GTPase-dependent conformational changes in tubulin, providing a mechanistic explanation for kinetic stabilization. Our findings demonstrate the importance of tubulin's GTPase activity during brain development, and indicate that tubulin isotypes play different, important roles during brain development.

11.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34762120

RESUMO

α- and ß-tubulins are encoded by multigene families, but the role of tubulin diversity for microtubule function has been a longstanding mystery. A new study (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202010155) shows that the two budding yeast α-tubulins have distinct roles during mitotic spindle positioning.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos
12.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617969

RESUMO

Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Encéfalo/metabolismo , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , Células-Tronco Neurais/metabolismo
13.
J Vitreoretin Dis ; 5(3): 258-260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37006510

RESUMO

Purpose: This work describes a case of Cutibacterium acnes (formerly Propionibacterium acnes) endophthalmitis following a posterior-chamber, phakic, Implantable Collamer Lens (ICL) surgery. Methods: A 34-year-old previously healthy woman presented with chronic unilateral iritis 8 months after bilateral ICL surgery. Original testing revealed no cause for the iritis with normal culture, serology, and autoimmune testing results. Results: Follow-up revealed C acnes by polymerase chain reaction on vitrectomy samples. Complete resolution of symptoms was achieved following removal of the implant, lensectomy, and intravitreal antibiotics. Conclusions: We believe this is the first reported case of postphakic ICL C acnes endophthalmitis. It highlights the utility of polymerase chain reaction in cases of chronic uveitis.

14.
Mol Biol Cell ; 31(24): 2733-2747, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997572

RESUMO

How cells regulate microtubule cross-linking activity to control the rate and duration of spindle elongation during anaphase is poorly understood. In this study, we test the hypothesis that PRC1/Ase1 proteins use distinct microtubule-binding domains to control the spindle elongation rate. Using the budding yeast Ase1, we identify unique contributions for the spectrin and carboxy-terminal domains during different phases of spindle elongation. We show that the spectrin domain uses conserved basic residues to promote the recruitment of Ase1 to the midzone before anaphase onset and slow spindle elongation during early anaphase. In contrast, a partial Ase1 carboxy-terminal truncation fails to form a stable midzone in late anaphase, produces higher elongation rates after early anaphase, and exhibits frequent spindle collapses. We find that the carboxy-terminal domain interacts with the plus-end tracking protein EB1/Bim1 and recruits Bim1 to the midzone to maintain midzone length. Overall, our results suggest that the Ase1 domains provide cells with a modular system to tune midzone activity and control elongation rates.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Anáfase/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos/fisiologia , Proteínas dos Microtúbulos/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/metabolismo , Fuso Acromático/fisiologia
15.
Nat Commun ; 11(1): 3765, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724196

RESUMO

Microtubules are dynamic tubulin polymers responsible for many cellular processes, including the capture and segregation of chromosomes during mitosis. In contrast to textbook models of tubulin self-assembly, we have recently demonstrated that microtubules elongate by addition of bent guanosine triphosphate tubulin to the tips of curving protofilaments. Here we explore this mechanism of microtubule growth using Brownian dynamics modeling and electron cryotomography. The previously described flaring shapes of growing microtubule tips are remarkably consistent under various assembly conditions, including different tubulin concentrations, the presence or absence of a polymerization catalyst or tubulin-binding drugs. Simulations indicate that development of substantial forces during microtubule growth and shortening requires a high activation energy barrier in lateral tubulin-tubulin interactions. Modeling offers a mechanism to explain kinetochore coupling to growing microtubule tips under assisting force, and it predicts a load-dependent acceleration of microtubule assembly, providing a role for the flared morphology of growing microtubule ends.


Assuntos
Microtúbulos/metabolismo , Modelos Biológicos , Tubulina (Proteína)/metabolismo , Animais , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Simulação de Dinâmica Molecular , Polimerização/efeitos dos fármacos , Suínos , Tubulina (Proteína)/isolamento & purificação , Tubulina (Proteína)/ultraestrutura , Moduladores de Tubulina/farmacologia
16.
Mol Biol Cell ; 31(11): 1154-1166, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32213119

RESUMO

How temperature specifically affects microtubule dynamics and how these lead to changes in microtubule networks in cells have not been established. We investigated these questions in budding yeast, an organism found in diverse environments and therefore predicted to exhibit dynamic microtubules across a broad temperature range. We measured the dynamics of GFP-labeled microtubules in living cells and found that lowering temperature from 37°C to 10°C decreased the rates of both polymerization and depolymerization, decreased the amount of polymer assembled before catastrophes, and decreased the frequency of microtubule emergence from nucleation sites. Lowering to 4°C caused rapid loss of almost all microtubule polymer. We provide evidence that these effects on microtubule dynamics may be explained in part by changes in the cofactor-dependent conformational dynamics of tubulin proteins. Ablation of tubulin-binding cofactors (TBCs) further sensitizes cells and their microtubules to low temperatures, and we highlight a specific role for TBCB/Alf1 in microtubule maintenance at low temperatures. Finally, we show that inhibiting the maturation cycle of tubulin by using a point mutant in ß-tubulin confers hyperstable microtubules at low temperatures and rescues the requirement for TBCB/Alf1 in maintaining microtubule polymer at low temperatures. Together, these results reveal an unappreciated step in the tubulin cycle.


Assuntos
Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Liases de Carbono-Enxofre/metabolismo , Temperatura Baixa , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Polimerização , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Tubulina (Proteína)/fisiologia
17.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184299

RESUMO

Newly born neurons express high levels of TUBA1A α-tubulin to assemble microtubules for neurite extension and to provide tracks for intracellular transport. In the adult brain, Tuba1a expression decreases dramatically. A mouse that harbors a loss-of-function mutation in the gene encoding TUBA1A (Tuba1aND/+ ) allows us to ask whether TUBA1A is important for the function of mature neurons. α-Tubulin levels are about half of wild type in juvenile Tuba1aND/+ brains, but are close to normal in older animals. In postnatal day (P)0 cultured neurons, reduced TUBA1A allows for assembly of less microtubules in axons resulting in more pausing during organelle trafficking. While Tuba1aND/+ mouse behavior is indistinguishable from wild-type siblings at weaning, Tuba1aND/+ mice develop adult-onset ataxia. Neurons important for motor function in Tuba1aND/+ remain indistinguishable from wild-type with respect to morphology and number and display no evidence of axon degeneration. Tuba1aND/+ neuromuscular junction (NMJ) synapses are the same size as wild-type before the onset of ataxia, but are reduced in size in older animals. Together, these data indicate that the TUBA1A-rich microtubule tracks that are assembled during development are essential for mature neuron function and maintenance of synapses over time.


Assuntos
Mutação de Sentido Incorreto , Tubulina (Proteína) , Animais , Camundongos , Microtúbulos , Neurogênese , Neurônios
18.
Curr Genet ; 66(2): 303-311, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31501990

RESUMO

Forces generated by molecular motors and the cytoskeleton move the nucleus and genome during many cellular processes, including cell migration and division. How these forces impact the genome, and whether cells regulate cytoskeletal forces to preserve genome integrity is unclear. We recently demonstrated that, in budding yeast, mutants that stabilize the microtubule cytoskeleton cause excessive movement of the mitotic spindle and nucleus. We found that increased nuclear movement results in DNA damage and increased time to repair the damage through homology-directed repair. Our results indicate that nuclear movement impairs DNA repair through increased tension on chromosomes and nuclear deformation. However, the previous studies have shown genome mobility, driven by cytoskeleton-based forces, aids in homology-directed DNA repair. This sets up an apparent paradox, where genome mobility may prevent or promote DNA repair. Hence, this review explores how the genome is affected by nuclear movement and how genome mobility could aid or hinder homology-directed repair.


Assuntos
Dano ao DNA , Reparo do DNA , Microtúbulos/metabolismo , Animais , Saccharomycetales/genética , Saccharomycetales/metabolismo
19.
Cytoskeleton (Hoboken) ; 77(3-4): 40-54, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31574570

RESUMO

The neuronal cytoskeleton performs incredible feats during nervous system development. Extension of neuronal processes, migration, and synapse formation rely on the proper regulation of microtubules. Mutations that disrupt the primary α-tubulin expressed during brain development, TUBA1A, are associated with a spectrum of human brain malformations. One model posits that TUBA1A mutations lead to a reduction in tubulin subunits available for microtubule polymerization, which represents a haploinsufficiency mechanism. We propose an alternative model for the majority of tubulinopathy mutations, in which the mutant tubulin polymerizes into the microtubule lattice to dominantly "poison" microtubule function. Nine distinct α-tubulin and ten ß-tubulin genes have been identified in the human genome. These genes encode similar tubulin proteins, called isotypes. Multiple tubulin isotypes may partially compensate for heterozygous deletion of a tubulin gene, but may not overcome the disruption caused by missense mutations that dominantly alter microtubule function. Here, we describe disorders attributed to haploinsufficiency versus dominant negative mechanisms to demonstrate the hallmark features of each disorder. We summarize literature on mouse models that represent both knockout and point mutants in tubulin genes, with an emphasis on how these mutations might provide insight into the nature of tubulinopathy patient mutations. Finally, we present data from a panel of TUBA1A tubulinopathy mutations generated in yeast α-tubulin that demonstrate that α-tubulin mutants can incorporate into the microtubule network and support viability of yeast growth. This perspective on tubulinopathy mutations draws on previous studies and additional data to provide a fresh perspective on how TUBA1A mutations disrupt neurodevelopment.


Assuntos
Encefalopatias/genética , Haploinsuficiência/genética , Tubulina (Proteína)/metabolismo , Humanos , Estrutura Molecular , Mutação
20.
Mol Biol Cell ; 30(16): 2000-2013, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31067146

RESUMO

Dividing cells must balance the maintenance of genome integrity with the generation of cytoskeletal forces that control chromosome position. In this study, we investigate how forces on astral microtubules impact the genome during cell division by using live-cell imaging of the cytoskeleton, chromatin, and DNA damage repair in budding yeast. Our results demonstrate that dynein-dependent forces on astral microtubules are propagated through the spindle during nuclear migration and when in excess can increase the frequency of double-stranded breaks (DSBs). Under these conditions, we find that homology-directed repair of DSBs is delayed, indicating antagonism between nuclear migration and the mechanism of homology-directed repair. These effects are partially rescued by mutants that weaken pericentric cohesion or mutants that decrease constriction on the nucleus as it moves through the bud neck. We propose that minimizing nuclear movement aids in finding a donor strand for homologous recombination.


Assuntos
Núcleo Celular/metabolismo , Reparo do DNA , Microtúbulos/metabolismo , Saccharomycetales/metabolismo , Fenômenos Biomecânicos , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação/genética , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA