Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 14(12): 16939-16950, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33253530

RESUMO

Heterojunctions of semiconductors and metals are the fundamental building blocks of modern electronics. Coherent heterostructures between dissimilar materials can be achieved by composition, doping, or heteroepitaxy of chemically different elements. Here, we report the formation of coherent single-layer 1H-1T MoS2 heterostructures by mechanical exfoliation on Au(111), which are chemically homogeneous with matched lattices but show electronically distinct semiconducting (1H phase) and metallic (1T phase) character, with the formation of these heterojunctions attributed to a combination of lattice strain and charge transfer. The exfoliation approach employed is free of tape residues usually found in many exfoliation methods and yields single-layer MoS2 with millimeter (mm) size on the Au surface. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS) have collectively been employed to elucidate the structural and electronic properties of MoS2 monolayers on Au substrates. Bubbles in the MoS2 formed by the trapping of ambient adsorbates beneath the single layer during deposition, have also been observed and characterized. Our work here provides a basis to produce two-dimensional heterostructures which represent potential candidates for future electronic devices.

2.
J Mol Model ; 23(2): 39, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120122

RESUMO

The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

3.
Nanoscale ; 7(28): 11915-21, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118367

RESUMO

Bismuth telluride (Bi2Te3) two-dimensional (2D) nanosheets prepared by van der Waals epitaxy were successfully detached, transferred, and suspended for nano-indentation measurements to be performed on freestanding circular nanosheets. The Young's modulus acquired by fitting linear elastic behaviors of 26 samples (thickness: 5-14 nm) is only 11.7-25.7 GPa, significantly smaller than the bulk in-plane Young's modulus (50-55 GPa). Compliant and robust Bi2Te3 2D nanosheets suggest the feasibility of the elastic strain engineering of topological surface states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA