RESUMO
Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due to anthropogenic activity and climatic change. Baseline data to inform sustainable management options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions from lake or wetland deposits) can provide crucial long-term perspectives needed to identify drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource managers using three current issues facing tropical delta regions: hydrology and sediment supply, salinisation and nutrient pollution. The unique ability of palaeolimnological methods to untangle multiple stressors is also discussed. We demonstrate how palaeolimnology has been used to understand each of these issues, in other aquatic environments, to be incorporated into policy. Palaeolimnology is a key tool to understanding how anthropogenic influences interact with other environmental stressors, providing policymakers and resource managers with a 'big picture' view and possible holistic solutions that can be implemented.
RESUMO
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.
Assuntos
Bactérias/isolamento & purificação , Microbiota , Rios/microbiologia , Bactérias/classificação , Bactérias/genética , Ecossistema , Filogenia , Rios/química , Reino UnidoRESUMO
Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a 'filter' modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large-scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.