Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Genet ; 55(2): 280-290, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36717694

RESUMO

How enhancers activate their distal target promoters remains incompletely understood. Here we dissect how CTCF-mediated loops facilitate and restrict such regulatory interactions. Using an allelic series of mouse mutants, we show that CTCF is neither required for the interaction of the Sox2 gene with distal enhancers, nor for its expression. Insertion of various combinations of CTCF motifs, between Sox2 and its distal enhancers, generated boundaries with varying degrees of insulation that directly correlated with reduced transcriptional output. However, in both epiblast and neural tissues, enhancer contacts and transcriptional induction could not be fully abolished, and insertions failed to disrupt implantation and neurogenesis. In contrast, Sox2 expression was undetectable in the anterior foregut of mutants carrying the strongest boundaries, and these animals fully phenocopied loss of SOX2 in this tissue. We propose that enhancer clusters with a high density of regulatory activity can better overcome physical barriers to maintain faithful gene expression and phenotypic robustness.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Camundongos , Animais , Elementos Facilitadores Genéticos/genética , Regiões Promotoras Genéticas/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
2.
Genes Dev ; 36(11-12): 699-717, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710138

RESUMO

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Animais , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fatores de Transcrição/metabolismo
3.
Genome Res ; 31(4): 564-575, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712417

RESUMO

Transcriptional enhancers are critical for development and phenotype evolution and are often mutated in disease contexts; however, even in well-studied cell types, the sequence code conferring enhancer activity remains unknown. To examine the enhancer regulatory code for pluripotent stem cells, we identified genomic regions with conserved binding of multiple transcription factors in mouse and human embryonic stem cells (ESCs). Examination of these regions revealed that they contain on average 12.6 conserved transcription factor binding site (TFBS) sequences. Enriched TFBSs are a diverse repertoire of 70 different sequences representing the binding sequences of both known and novel ESC regulators. Using a diverse set of TFBSs from this repertoire was sufficient to construct short synthetic enhancers with activity comparable to native enhancers. Site-directed mutagenesis of conserved TFBSs in endogenous enhancers or TFBS deletion from synthetic sequences revealed a requirement for 10 or more different TFBSs. Furthermore, specific TFBSs, including the POU5F1:SOX2 comotif, are dispensable, despite cobinding the POU5F1 (also known as OCT4), SOX2, and NANOG master regulators of pluripotency. These findings reveal that a TFBS sequence diversity threshold overrides the need for optimized regulatory grammar and individual TFBSs that recruit specific master regulators.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo
4.
Genome ; 64(4): 426-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32961076

RESUMO

Enhancers are cis-regulatory sequences located distally to target genes. These sequences consolidate developmental and environmental cues to coordinate gene expression in a tissue-specific manner. Enhancer function and tissue specificity depend on the expressed set of transcription factors, which recognize binding sites and recruit cofactors that regulate local chromatin organization and gene transcription. Unlike other genomic elements, enhancers are challenging to identify because they function independently of orientation, are often distant from their promoters, have poorly defined boundaries, and display no reading frame. In addition, there are no defined genetic or epigenetic features that are unambiguously associated with enhancer activity. Over recent years there have been developments in both empirical assays and computational methods for enhancer prediction. We review genome-wide tools, CRISPR advancements, and high-throughput screening approaches that have improved our ability to both observe and manipulate enhancers in vitro at the level of primary genetic sequences, chromatin states, and spatial interactions. We also highlight contemporary animal models and their importance to enhancer validation. Together, these experimental systems and techniques complement one another and broaden our understanding of enhancer function in development, evolution, and disease.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Expressão Gênica , Animais , Sítios de Ligação , Cromatina , Doença , Epigenômica/métodos , Técnicas de Inativação de Genes , Genoma , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
5.
Genome Res ; 27(2): 246-258, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27895109

RESUMO

Transcriptional enhancers are critical for maintaining cell-type-specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Murinas/metabolismo , Transcrição Gênica , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Deleção de Genes , Camundongos
6.
J Vis Exp ; (110): e53552, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27078492

RESUMO

Enhancers control cell identity by regulating tissue-specific gene expression in a position and orientation independent manner. These enhancers are often located distally from the regulated gene in intergenic regions or even within the body of another gene. The position independent nature of enhancer activity makes it difficult to match enhancers with the genes they regulate. Deletion of an enhancer region provides direct evidence for enhancer activity and is the gold standard to reveal an enhancer's role in endogenous gene transcription. Conventional homologous recombination based deletion methods have been surpassed by recent advances in genome editing technology which enable rapid and precisely located changes to the genomes of numerous model organisms. CRISPR/Cas9 mediated genome editing can be used to manipulate the genome in many cell types and organisms rapidly and cost effectively, due to the ease with which Cas9 can be targeted to the genome by a guide RNA from a bespoke expression plasmid. Homozygous deletion of essential gene regulatory elements might lead to lethality or alter cellular phenotype whereas monoallelic deletion of transcriptional enhancers allows for the study of cis-regulation of gene expression without this confounding issue. Presented here is a protocol for CRISPR/Cas9 mediated deletion in F1 mouse embryonic stem (ES) cells (Mus musculus(129) x Mus castaneus). Monoallelic deletion, screening and expression analysis is facilitated by single nucleotide polymorphisms (SNP) between the two alleles which occur on average every 125 bp in these cells.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , Elementos Facilitadores Genéticos/genética , Recombinação Homóloga/genética , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Deleção de Genes , Expressão Gênica/fisiologia , Técnicas de Genotipagem , Camundongos , Plasmídeos , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Sequências Reguladoras de Ácido Nucleico/genética , Transfecção
7.
Genes (Basel) ; 6(3): 641-61, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26193323

RESUMO

Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA