Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38243989

RESUMO

Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing from the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.

2.
Regen Med ; 18(8): 635-657, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37492007

RESUMO

Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.


Tissue engineering and regenerative medicine can design processes or products to restore, repair, or replace injured or diseased cells, tissues or organs. It contains the generation and making use of therapeutic stem cells, and engineered scaffolds for the manufacture of artificial organs. This field focuses on the development and application of new treatments to heal tissues and organs as well as repair functions lost due to damage, defects, disease or aging. The World Health Organization has described probiotics as "live microorganisms that, when administered in sufficient amounts, confer a health advantage on the host". Probiotics are found naturally in certain foods, such as kimchi and fermented yogurt. They are also found in your gut, where they partake in a type of important bodily processes, such as vitamin production, digestion, mood regulation, and immune function. Probiotics with their suitable pro-healing effects on different systems of the body can be used in regenerative medicine. Probiotic bacteria induce their beneficial effects via proven mechanisms including pathogens killing, modulating the gut microbiota, immunomodulatory effects, and anti-diabetic, anti-obesity and anti-cancer functions. Moreover, recent studies indicated that probiotics could neutralize infections caused by COVID-19. Probiotics are healthy microorganisms that exert multiple positive effects on human health, especially through the battle against pathogens and repairing different types of body tissues.


Assuntos
Probióticos , Medicina Regenerativa , Engenharia Tecidual , Materiais Biocompatíveis , Cicatrização , Humanos , Microbiota , Animais
3.
Galen Med J ; 9: e1558, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34466553

RESUMO

BACKGROUND: Transplantation of cryopreserved follicles can be regarded as a promising strategy for preserving fertility in cancer patients under chemotherapy and radiotherapy by reducing the risk of cancer recurrence. The present study aimed to evaluate whether fibrin hydrogel supplemented with platelet lysate (PL) could be applied to enhance follicular survival, growth, and angiogenesis in cryopreserved preantral follicle grafts. MATERIALS AND METHODS: Preantral follicles were extracted from 15 four-week-old NMRI mice, cryopreserved by cryotop method, and encapsulated in fibrin-platelet lysate for subsequent heterotopic (subcutaneous) auto-transplantation into the neck. Transplants were assessed in three groups including fresh follicles in fibrin-15%PL, cryopreserved follicles in fibrin-15%PL, and cryopreserved follicles in fibrin-0% PL. Two weeks after transplantation, histological, and immunohistochemistry (CD31) analysis were applied to evaluate follicle morphology, survival rate, and vascular formation, respectively. RESULTS: Based on the results, fibrin-15% PL significantly increased neovascularization and survival rate (SR) both in cryopreserved (SR=66.96%) and fresh follicle (SR=90.8%) grafts, compared to PL-less fibrin cryopreserved transplants (SR=28.46%). The grafts supplemented with PL included a significantly higher percentage of preantral and antral follicles. Also, no significant difference was observed in the percentage of preantral follicles between cryopreserved and fresh grafts of fibrin-15% PL. However, a significantly lower (P=0.03) percentage of follicles (23.37%) increased to the antral stage in cryopreserved grafts of fibrin-15%PL, compared to fresh grafts (35.01%). CONCLUSION: The findings demonstrated that fibrin-PL matrix could be a promising strategy to improve cryopreserved follicle transplantation and preserve fertility in cancer patients at the risk of ovarian failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA