Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pain ; 164(8): 1828-1840, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943275

RESUMO

ABSTRACT: Transferring fibromyalgia patient immunoglobulin G (IgG) to mice induces pain-like behaviour, and fibromyalgia IgG binds mouse and human satellite glia cells (SGCs). These findings suggest that autoantibodies could be part of fibromyalgia pathology. However, it is unknown how frequently fibromyalgia patients have anti-SGC antibodies and how anti-SGC antibodies associate with disease severity. Here, we quantified serum or plasma anti-SGC IgG levels in 2 fibromyalgia cohorts from Sweden and Canada using an indirect immunofluorescence murine cell culture assay. Fibromyalgia serum IgG binding to human SGCs in human dorsal root ganglia tissue sections was also assessed by immunofluorescence. In the cell culture assay, anti-SGC IgG levels were increased in both fibromyalgia cohorts compared with control group. Elevated anti-SGC IgG was associated with higher levels of self-reported pain in both cohorts, and higher fibromyalgia impact questionnaire scores and increased pressure sensitivity in the Swedish cohort. Anti-SGC IgG levels were not associated with fibromyalgia duration. Swedish fibromyalgia (FM) patients were clustered into FM-severe and FM-mild groups, and the FM-severe group had elevated anti-SGC IgG compared with the FM-mild group and control group. Anti-SGC IgG levels detected in culture positively correlated with increased binding to human SGCs. Moreover, the FM-severe group had elevated IgG binding to human SGCs compared with the FM-mild and control groups. These results demonstrate that a subset of fibromyalgia patients have elevated levels of anti-SGC antibodies, and the antibodies are associated with more severe fibromyalgia symptoms. Screening fibromyalgia patients for anti-SGC antibodies could provide a path to personalized treatment options that target autoantibodies and autoantibody production.


Assuntos
Fibromialgia , Humanos , Animais , Camundongos , Fibromialgia/diagnóstico , Dor , Autoanticorpos , Imunoglobulina G , Inquéritos e Questionários
2.
Pain ; 163(7): e821-e836, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913882

RESUMO

ABSTRACT: The pathophysiology of fibromyalgia syndrome (FMS) remains elusive, leading to a lack of objective diagnostic criteria and targeted treatment. We globally evaluated immune system changes in FMS by conducting multiparametric flow cytometry analyses of peripheral blood mononuclear cells and identified a natural killer (NK) cell decrease in patients with FMS. Circulating NK cells in FMS were exhausted yet activated, evidenced by lower surface expression of CD16, CD96, and CD226 and more CD107a and TIGIT. These NK cells were hyperresponsive, with increased CCL4 production and expression of CD107a when co-cultured with human leukocyte antigen null target cells. Genetic and transcriptomic pathway analyses identified significant enrichment of cell activation pathways in FMS driven by NK cells. Skin biopsies showed increased expression of NK activation ligand, unique long 16-binding protein, on subepidermal nerves of patients FMS and the presence of NK cells near peripheral nerves. Collectively, our results suggest that chronic activation and redistribution of circulating NK cells to the peripheral nerves contribute to the immunopathology associated with FMS.


Assuntos
Fibromialgia , Fibromialgia/metabolismo , Citometria de Fluxo , Humanos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares , Nervos Periféricos
3.
PLoS Pathog ; 17(5): e1009553, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015044

RESUMO

Bacterial infection results in a veritable cascade of host responses, both local and systemic. To study the initial stages of host-pathogen interaction in living tissue we use spatially-temporally controlled in vivo models. Using this approach, we show here that within 4 h of a uropathogenic Escherichia coli (UPEC) infection in the kidney, an IFNγ response is triggered in the spleen. This rapid infection-mediated inter-organ communication was found to be transmitted via nerve signalling. Bacterial expression of the toxin α-hemolysin directly and indirectly activated sensory neurons, which were identified in the basement membrane of renal tubules. Nerve activation was transmitted via the splenic nerve, inducing upregulation of IFNγ in the marginal zones of the spleen that led to increasing concentrations of IFNγ in the circulation. We found that IFNγ modulated the inflammatory signalling generated by renal epithelia cells in response to UPEC infection. This demonstrates a new concept in the host response to kidney infection; the role of nerves in sensing infection and rapidly triggering a systemic response which can modulate inflammation at the site of infection. The interplay between the nervous and immune systems is an exciting, developing field with the appealing prospect of non-pharmaceutical interventions. Our study identifies an important role for systemic neuro-immune communication in modulating inflammation during the very first hours of a local bacterial infection in vivo.


Assuntos
Infecções por Escherichia coli/complicações , Interações Hospedeiro-Patógeno , Inflamação/patologia , Interferon gama/metabolismo , Rim/microbiologia , Neuroimunomodulação , Baço/metabolismo , Animais , Células Epiteliais/microbiologia , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Escherichia coli Uropatogênica/fisiologia
4.
Curr Alzheimer Res ; 15(8): 731-742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29473508

RESUMO

BACKGROUND: Amyloid beta inhibits olfactory bulb function. The mechanisms involved in this effect must include alterations in network excitability, inflammation and the activation of different transduction pathways. Thus, here we tested whether tolfenamic acid, a drug that modulates several of these pathological processes, could prevent amyloid beta-induced olfactory bulb dysfunction. OBJECTIVE: To test whether tolfenamic acid prevents amyloid beta-induced alterations in olfactory bulb network function, olfaction and GSK3ß activity. METHOD: The protective effects of tolfenamic acid against amyloid beta-induced population activity inhibition were tested in olfactory bulb slices from adult mice, while tolfenamic acid and amyloid beta were bath-applied. We also tested the effects of amyloid-beta in slices obtained from animals pre-treated chronically (21 days) with tolfenamic acid. The effects of amyloid beta micro-injected into the olfactory bulbs were also tested, after two weeks, on olfactory bulb population activity and olfaction in control and tolfenamic acid chronically treated animals. Olfaction was assessed with the odor-avoidance and the habituation/cross-habituation tests. GSK3ß activation was evaluated with Western-blot. RESULTS: Acute bath application of tolfenamic acid does not prevent amyloid beta-induced inhibition of olfactory bulb network activity in vitro. In contrast, chronic treatment with tolfenamic acid renders the olfactory bulb resistant to amyloid beta-induced network activity inhibition in vitro and in vivo, which correlates with the inhibition of GSK3ß activation and the protection against amyloid beta-induced olfactory dysfunction. CONCLUSION: Our data further support the use of tolfenamic acid to prevent amyloid beta-induced pathology and the early symptoms of Alzheimer Disease.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Anti-Inflamatórios não Esteroides/farmacologia , Bulbo Olfatório/fisiopatologia , Fragmentos de Peptídeos/toxicidade , Olfato/fisiologia , ortoaminobenzoatos/farmacologia , Analgésicos/farmacologia , Animais , Raposas , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos , Odorantes , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Técnicas de Cultura de Órgãos , Olfato/efeitos dos fármacos
5.
Anesthesiology ; 123(4): 899-908, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26244888

RESUMO

BACKGROUND: Patients with neuropathic pain show reduced endogenous analgesia induced by a conditioned noxious stimulus. Here, the authors tested whether peripheral nerve injury impairs descending noradrenergic inhibition from the locus coeruleus (LC) after L5-L6 spinal nerve ligation (SNL) in rats. METHODS: A subdermal injection of capsaicin was used to examine noxious stimulation-induced analgesia (NSIA), evoked LC glutamate and spinal noradrenaline release, and evoked LC neuronal activity in normal and SNL rats. The authors also examined the role of presynaptic metabotropic glutamate receptors or the astroglial glutamate transporter-1 (GLT-1). RESULTS: SNL increased basal extracellular glutamate concentration in the LC (170.1%; 95% CI, 44.7 to 295.5; n = 15) and basal spinal cord noradrenaline release (252.1%; 95% CI, 113.6 to 391.3; n = 15), which was associated with an increased tonic LC neuronal activity and a down-regulation of GLT-1 in the LC. SNL reduced NSIA (-77.6%; 95% CI, -116.4 to -38.8; n = 14) and capsaicin evoked release of glutamate in the LC (-36.2%; 95% CI, -49.3 to -23.2; n = 8) and noradrenaline in the spinal cord (-38.8%; 95% CI, -45.1 to -32.5; n = 8). Capsaicin-evoked LC neuronal activation was masked in SNL rats. Removing autoinhibition of glutamatergic terminals by metabotropic glutamate receptor blockade or increasing GLT-1 expression by histone deacetylase inhibition restored NSIA in SNL rats. SNL-induced impairment of NSIA was mimicked in normal rats by knockdown of GLT-1 in the LC. CONCLUSIONS: These results suggest that increased extracellular glutamate in the LC consequent to down-regulation of GLT-1 contributes to LC dysfunction and impaired pain-evoked endogenous analgesia after nerve injury.


Assuntos
Analgesia/métodos , Ácido Glutâmico/fisiologia , Locus Cerúleo/metabolismo , Neuralgia/metabolismo , Nervos Espinhais/lesões , Nervos Espinhais/metabolismo , Animais , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
6.
Arthritis Res Ther ; 16(2): R64, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24612981

RESUMO

INTRODUCTION: Clinical and preclinical studies have shown that supplementation with ω-3 polyunsaturated fatty acids (ω-3 PUFAs) reduce joint destruction and inflammation present in rheumatoid arthritis (RA). However, the effects of individual ω-3 PUFAs on chronic arthritic pain have not been evaluated to date. Thus, our aim in this study was to examine whether purified docosahexaenoic acid (DHA, an ω-3 PUFA) reduces spontaneous pain-related behavior and knee edema and improves functional outcomes in a mouse model of knee arthritis. METHODS: Unilateral arthritis was induced by multiple injections of Complete Freund's Adjuvant (CFA) into the right knee joints of male ICR adult mice. Mice that received CFA injections were then chronically treated from day 15 until day 25 post-initial CFA injection with oral DHA (10, 30 and 100 mg/kg daily) or intraarticular DHA (25 and 50 µg/joint twice weekly). Spontaneous flinching of the injected extremity (considered as spontaneous pain-related behavior), vertical rearing and horizontal exploratory activity (considered as functional outcomes) and knee edema were assessed. To determine whether an endogenous opioid mechanism was involved in the therapeutic effect of DHA, naloxone (NLX, an opioid receptor antagonist, 3 mg/kg subcutaneously) was administered in arthritic mice chronically treated with DHA (30 mg/kg by mouth) at day 25 post-CFA injection. RESULTS: The intraarticular CFA injections resulted in increasing spontaneous flinching and knee edema of the ipsilateral extremity as well as worsening functional outcomes as time progressed. Chronic administration of DHA, given either orally or intraarticularly, significantly improved horizontal exploratory activity and reduced flinching behavior and knee edema in a dose-dependent manner. Administration of NLX did not reverse the antinociceptive effect of DHA. CONCLUSIONS: To the best of our knowledge, this report is the first to demonstrate DHA's antinociceptive and anti-inflammatory effects as individual ω-3 PUFAs following sustained systemic and intraarticular administration in a mouse model of CFA-induced knee arthritis. The results suggest that DHA treatment may offer a new therapeutic approach to alleviate inflammation as well as a beneficial effect on pain-related functional disabilities in RA patients.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/patologia , Ácidos Docosa-Hexaenoicos/farmacologia , Articulação do Joelho/efeitos dos fármacos , Dor/tratamento farmacológico , Animais , Artrite Experimental/patologia , Edema , Adjuvante de Freund/toxicidade , Articulação do Joelho/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Dor/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA