Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Acta Biomater ; 180: 18-45, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641182

RESUMO

Bacterial extracellular vesicles (BEVs) are naturally occurring bioactive membrane-bound nanoparticles released by both gram-negative and gram-positive bacterial species, exhibiting a multifaceted role in mediating host-microbe interactions across various physiological conditions. Increasing evidence supports BEVs as essential mediators of cell-to-cell communicaiton, influencing bacterial pathogenicity, disease mechanisms, and modulating the host immune response. However, the extent to which these BEV-mediated actions can be leveraged to predict disease onset, guide treatment strategies, and determine clinical outcomes remains uncertain, particularly in terms of their clinical translation potentials. This review briefly describes BEV biogenesis and their internalisation by recipient cells and summarises methods for isolation and characterization, essential for understanding their composition and cargo. Further, it discusses the potential of biofluid-associated BEVs as biomarkers for various diseases, spanning both cancer and non-cancerous conditions. Following this, we outline the ongoing human clinical trials of using BEVs for vaccine development. In addition to disease diagnostics, this review explores the emerging research of using natural or engineered BEVs as smart nanomaterials for applications in anti-cancer therapy and bone regeneration. This discussion extends to key factors for unlocking the clinical potential of BEVs, such as standardization of BEV isolation and characterisation, as well as other hurdles in translating these findings to the clinical setting. We propose that addressing these hurdles through collaborative research efforts and well-designed clinical trials holds the key to fully harnessing the clinical potential of BEVs. As this field advances, this review suggests that BEV-based nanomedicine has the potential to revolutionize disease management, paving the way for innovative diagnosis, therapeutics, and personalized medicine approaches. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) from both host cells and bacteria serve as multifunctional biomaterials and are emerging in the fields of biomedicine, bioengineering, and biomaterials. However, the majority of current studies focus on host-derived EVs, leaving a gap in comprehensive research on bacteria-derived EVs (BEVs). Although BEVs offer an attractive option as nanomaterials for drug delivery systems, their unique nanostructure and easy-to-modify functions make them a potential method for disease diagnosis and treatment as well as vaccine development. Our work among the pioneering studies investigating the potential of BEVs as natural nanobiomaterials plays a crucial role in both understanding the development of diseases and therapeutic interventions.


Assuntos
Vesículas Extracelulares , Nanoestruturas , Vesículas Extracelulares/metabolismo , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Animais , Bactérias/metabolismo , Neoplasias/terapia , Neoplasias/patologia
2.
Biomater Adv ; 158: 213770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242057

RESUMO

Recent research indicates that combining 3D bioprinting and small extracellular vesicles (sEVs) offers a promising 'cell-free' regenerative medicine approach for various tissue engineering applications. Nonetheless, the majority of existing research has focused on bioprinting of sEVs sourced from cell lines. There remains a notable gap in research regarding the bioprinting of sEVs derived from primary human periodontal cells and their potential impact on ligamentous and osteogenic differentiation. Here, we investigated the effect of 3D bioprinted periodontal cell sEVs constructs on the differentiation potential of human buccal fat pad-derived mesenchymal stromal cells (hBFP-MSCs). Periodontal cell-derived sEVs were enriched by size exclusion chromatography (SEC) with particle-shaped morphology, and characterized by being smaller than 200 nm in size and CD9/CD63/CD81 positive, from primary human periodontal ligament cells (hPDLCs) and human gingival fibroblasts (hGFs). The sEVs were then 3D bioprinted in 10 % gelatin methacryloyl (GelMA) via microextrusion bioprinting. Release of sEVs from bioprinted constructs was determined by DiO-labelling and confocal imaging, and CD9 ELISA. Attachment and ligament/osteogenic/cementogenic differentiation of hBFP-MSCs was assessed on bioprinted GelMA, without and with sEVs (GelMA/hPDLCs-sEVs and GelMA/hGFs-sEVs), scaffolds. hBFP-MSCs seeded on the bioprinted sEVs constructs spread well with significantly enhanced focal adhesion, mechanotransduction associated gene expression, and ligament and osteogenesis/cementogenesis differentiation markers in GelMA/hPDLCs-sEVs, compared to GelMA/hGFs-sEVs and GelMA groups. A 2-week osteogenic and ligamentous differentiation showed enhanced ALP staining, calcium formation and toluidine blue stained cells in hBFP-MSCs on bioprinted GelMA/hPDLCs-sEVs constructs compared to the other two groups. The proof-of-concept data from this study supports the notion that 3D bioprinted GelMA/hPDLCs-sEVs scaffolds promote cell attachment, as well as ligamentous, osteogenic and cementogenic differentiation, of hBFP-MSCs in vitro.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Osteogênese , Mecanotransdução Celular , Engenharia Tecidual/métodos
3.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38076912

RESUMO

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

4.
Prog Mol Biol Transl Sci ; 199: 33-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37678978

RESUMO

Regenerative medicine is an interdisciplinary field involving the process of replacing and regenerating cells/tissues or organs by integrating medicine, science, and engineering principles to enhance the intrinsic regenerative capacity of the host. Recently, engineered adult stem cells have gained attention for their potential use in regenerative medicine by reducing inflammation and modulating the immune system. This chapter introduces adult stem cell engineering and chimeric antigen receptor T cells (CAR T) gene therapy and summarises current engineered stem cell- and extracellular vesicles (EVs)-focused clinical trial studies that provide the basis for the proposal of a personalised medicine approach to diseases diagnosis and treatment.


Assuntos
Células-Tronco Adultas , Medicina , Adulto , Humanos , Células-Tronco , Imunoterapia Adotiva , Inflamação
5.
J Periodontal Res ; 58(6): 1188-1200, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605485

RESUMO

OBJECTIVE: To enrich and compare three extracellular vesicles-EV subtypes (apoptotic bodies, microvesicles and small EV) from three periodontal cells (periodontal ligament cells-PDLCs, alveolar bone-derived osteoblasts-OBs and gingival fibroblasts-GFs), and assess uptake and cell function changes in buccal fat pad-derived mesenchymal stromal cells (BFP-MSCs). BACKGROUND: Periodontal cells such as PDLCs, OBs and GFs have the potential to enhance bone and periodontal regeneration, but face significant challenges, such as the regulatory and cost implications of in vitro cell culture and storage. To address these challenges, it is important to explore alternative 'cell-free' strategies, such as extracellular vesicles which have emerged as promising tools in regenerative medicine, to facilitate osteogenic differentiation and bone regeneration. METHODS AND MATERIALS: Serial centrifuges at 2600 and 16 000 g were used to isolate apoptotic bodies and microvesicles respectively. Small EV-sEV was enriched by our in-house size exclusion chromatography (SEC). The cellular uptake, proliferation, migration and osteogenic/adipogenic differentiation genes were analysed after EVs uptake in BFP-MSCs. RESULTS: Three EV subtypes were enriched and characterised by morphology, particle size and EV-associated protein expression-CD9. Cellular uptake of the three EVs subtypes was observed in BFP-MSCs for up to 7 days. sEV from the three periodontal cells promoted proliferation, migration and osteogenic gene expression. hOBs-sEV showed superior levels of osteogenesis markers compared to that hPDLCs-sEV and hGFs-sEV, while hOBs-16k EV promoted adipogenic gene expression compared to that from hPDLCs and hGFs. CONCLUSIONS: Our proof-of-concept data demonstrate that hOBs-sEV might be an alternative cell-free therapeutic for bone tissue engineering.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Vesículas Extracelulares/metabolismo , Técnicas de Cultura de Células , Células Cultivadas
6.
Nanomaterials (Basel) ; 13(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446538

RESUMO

Zinc (Zn) as a biodegradable metal has attracted research interest for bone reconstruction, with the aim of eliminating the need for a second removal surgery and minimizing the implant-to-bone transfer of stress-shielding to maintain bone regeneration. In addition, Zn has been shown to have antibacterial properties, particularly against Gram-negative bacteria, and is often used as a surface coating to inhibit bacterial growth and biofilm formation. However, the antibacterial property of Zn is still suboptimal in part due to low Zn ion release during degradation that has to be further improved in order to meet clinical requirements. This work aims to perform an innovative one-step surface modification using a nitric acid treatment to accelerate Zn ion release by increasing surface roughness, thereby endowing an effective antimicrobial property and biofilm formation inhibition. The antibacterial performance against Staphylococci aureus was evaluated by assessing biofilm formation and adhesion using quantitative assays. The surface roughness of acid-treated Zn (Ra ~ 30 nm) was significantly higher than polished Zn (Ra ~ 3 nm) and corresponded with the marked inhibition of bacterial biofilm, and this is likely due to the increased surface contact area and Zn ion accumulation. Overall, surface modification due to nitric acid etching appears to be an effective technique that can produce unique morphological surface structures and enhance the antibacterial properties of biodegradable Zn-based materials, thus increasing the translation potential toward multiple biomedical applications.

7.
Tissue Eng Part C Methods ; 29(7): 298-306, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358387

RESUMO

This cross-sectional pilot study explored extracellular vesicle (EV)-derived gene expression of markers for bone turnover and pro-inflammatory cytokines in periodontal disease. Whole unstimulated saliva was collected from 52 participants (18 healthy, 13 gingivitis, and 21 stages III/IV periodontitis), from which salivary small extracellular vesicles (sEVs) were enriched using the size-exclusion chromatography method, and characterized by morphology, EV-protein, and size distribution, using transmission electron microscopy (TEM), enzyme-linked immunosorbent assay (ELISA), and Nanoparticle Tracking Analysis (NTA), respectively. Bone turnover markers and pro-inflammatory cytokines in salivary sEVs were evaluated using reverse transcription PCR. Salivary sEVs morphology, mode, size distribution, and particle concentration were comparable between healthy, gingivitis, and periodontitis patients. The CD9+ subpopulation was significantly higher in periodontitis-derived salivary sEVs compared with healthy. The detection of sEVs mRNA for osterix and tumor necrosis factor-alpha was significantly decreased and increased, respectively, in periodontitis compared with healthy controls, with good discriminatory power for periodontitis diagnosis (area under the curve >0.72). This pilot study demonstrated that salivary sEVs mRNAs may serve as a potential noninvasive biomarker source for periodontitis diagnosis.


Assuntos
Gengivite , Periodontite , Humanos , Fator de Necrose Tumoral alfa/análise , Projetos Piloto , RNA Mensageiro/genética , Estudos Transversais , Citocinas
8.
Trends Pharmacol Sci ; 44(6): 324-334, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36805364

RESUMO

Adenosine-lidocaine-magnesium (ALM) mixture is a cardioplegic agent that improves survivability undisputedly in rodents, but not swine, models of hemorrhagic shock. However, despite protection from comorbid coagulopathy being the one common effect reported in both models, the underlying prothrombotic mechanism for ALM has not been fully elucidated. Here, we undertook a component-based approach focusing on individual drugs in the mixture to elaborate on the protective mechanism against coagulopathy within the frames of adenosine signaling and metabolic pathways. Additionally, the translational potential of small and large animal models of hemorrhagic shock for human survival is critically appraised, owing to substantial quantitative/qualitative differences between humans and rodents, particularly regarding the genetics of G protein-coupled receptors (GPCRs) interacting with ALM's constituents.


Assuntos
Choque Hemorrágico , Humanos , Suínos , Animais , Magnésio/farmacologia , Adenosina , Lidocaína/farmacologia , Modelos Animais de Doenças
9.
J Periodontol ; 94(1): 77-87, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771077

RESUMO

BACKGROUND: This prospective cohort study aimed to evaluate the antibody responses in non-invasive gingival crevicular fluid (GCF) and unstimulated whole saliva to the SARS-CoV-2 Spike unit 1 receptor-binding domain (S1-RBD) protein following administration of the mRNA BNT162b2 vaccine. METHODS: This longitudinal study recruited 37 participants with no prior COVID-19 exposure (eight people recruited prior to the COVID-19 pandemic - labeled pre-COVID, 16 vaccinated and 13 non-vaccinated participants). An enzyme-linked immunosorbent assay (ELISA) was used to determine antibody levels against S1-RBD in saliva (n=90) and GCF (n=80) samples obtained at 1 and 3 weeks after dose 1, and 3 days, 7 days, and 3 weeks after dose 2. To determine previous SARS-CoV-2 infection status, anti-nucleocapsid (N) Ig levels were determined in samples from the pre-COVID (saliva as reference), non-vaccinated (saliva and GCF), and vaccinated (saliva and GCF) participants at 1-week post-dose 1 using ELISA. RESULTS: Salivary levels of anti-N antibodies measured in samples from vaccinated and nonvaccinated participants were comparable to those in pre-COVID saliva samples collected between October 2018 and September 2019, thus confirming that all study participants had no prior SARS-CoV-2 infection. Overall, the levels of anti-S1-RBD antibodies peaked at 3 weeks after dose 2 in both saliva and GCF for all three immunoglobulin isotypes. Notably, the concentration of anti-S1-RBD antibodies in GCF was significantly higher than in saliva at all time points. CONCLUSION: This study establishes GCF and saliva as viable alternative non-invasive sources to monitor levels of antibodies following vaccination, with GCF demonstrating feasibility as a biofluid source for the detection of antibodies against SARS-CoV-2 S1-RBD antigen.


Assuntos
COVID-19 , Líquido do Sulco Gengival , Humanos , Líquido do Sulco Gengival/química , Vacina BNT162 , COVID-19/prevenção & controle , COVID-19/metabolismo , Formação de Anticorpos , Pandemias , Estudos Longitudinais , Estudos Prospectivos , SARS-CoV-2 , Vacinas de mRNA
10.
NPJ Parkinsons Dis ; 8(1): 173, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535953

RESUMO

The accumulation of α-synuclein (α-syn) in intracellular formations known as Lewy bodies (LBs) is associated with several neurodegenerative diseases including Parkinson's disease and Lewy Body Dementia. There is still limited understanding of how α-syn and LB formation is associated with cellular dysfunction and degeneration in these diseases. To examine the clearance and production dynamics of α-syn we transduced organotypic murine brain slice cultures (BSCs) with recombinant adeno-associated viruses (rAAVs) to express Dendra2-tagged human wild-type (WT) and mutant A53T α-syn, with and without the addition of exogenous α-syn fibrillar seeds and tracked them over several weeks in culture using optical pulse labeling. We found that neurons expressing WT or mutant A53T human α-syn show similar rates of α-syn turnover even when insoluble, phosphorylated Ser129 α-syn has accumulated. Taken together, this data reveals α-syn aggregation and overexpression, pSer129 α-syn, nor the A53T mutation affect α-syn dynamics in this system. Prion-type seeding with exogenous α-syn fibrils significantly slows α-syn turnover, in the absence of toxicity but is associated with the accumulation of anti-p62 immunoreactivity and Thiazin Red positivity. Prion-type induction of α-syn aggregation points towards a potential protein clearance deficit in the presence of fibrillar seeds and the ease of this system to explore precise mechanisms underlying these processes. This system facilitates the exploration of α-syn protein dynamics over long-term culture periods. This platform can further be exploited to provide mechanistic insight on what drives this slowing of α-syn turnover and how therapeutics, other genes or different α-syn mutations may affect α-syn protein dynamics.

11.
Cardiovasc Ther ; 2022: 5299370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262119

RESUMO

Background and Aims: The nacht domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is upregulated in human abdominal aortic aneurysm (AAA), but its pathogenic role is unclear. The aims of this study were firstly to examine whether the inflammasome was upregulated in a mouse model of AAA and secondly to test whether the inflammasome inhibitor colchicine limited AAA growth. Methods: AAA was induced in eight-week-old male C57BL6/J mice with topical application of elastase to the infrarenal aorta and oral 3-aminopropionitrile (E-BAPN). For aim one, inflammasome activation, abdominal aortic diameter, and rupture were compared between mice with AAA and sham controls. For aim two, 3 weeks after AAA induction, mice were randomly allocated to receive colchicine (n = 28, 0.2 mg/kg/d) or vehicle control (n = 29). The primary outcome was the rate of maximum aortic diameter increase measured by ultrasound over 13 weeks. Results: There was upregulation of NLRP3 markers interleukin- (IL-) 1ß (median, IQR; 15.67, 7.11-22.60 pg/mg protein versus 6.87, 4.54-11.60 pg/mg protein, p = .048) and caspase-1 (109, 83-155 relative luminosity units (RLU) versus 45, 38-65 RLU, p < .001) in AAA samples compared to controls. Aortic diameter increase over 80 days (mean difference, MD, 4.3 mm, 95% CI 3.3, 5.3, p < .001) was significantly greater in mice in which aneurysms were induced compared to sham controls. Colchicine did not significantly limit aortic diameter increase over 80 days (MD -0.1 mm, 95% CI -1.1, 0.86, p = .922). Conclusions: The inflammasome was activated in this mouse model of AAA; however, daily oral administration of colchicine did not limit AAA growth.


Assuntos
Aneurisma da Aorta Abdominal , Animais , Masculino , Camundongos , Aminopropionitrilo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/tratamento farmacológico , Caspases , Colchicina/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Leucina , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Elastase Pancreática
12.
RSC Adv ; 12(38): 24849-24856, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36128389

RESUMO

Sensitive detection of immunoglobulin antibodies against SARS-CoV-2 during the COVID-19 pandemic is critical to monitor the adaptive immune response after BNT162b2 mRNA vaccination. Currently employed binding antibody detection tests using 2D microplate-based enzyme-linked immunosorbent assays (ELISA) are limited by the degree of sensitivity. In this study, a 3D antibody test was developed by immobilizing the receptor-binding domain on Spike subunit 1 (S1-RBD) of SARS-CoV-2 onto engineered melt electrowritten (MEW) poly(ε-caprolactone) (PCL) scaffolds (pore: 500 µm, fiber diameter: 17 µm) using carbodiimide crosslinker chemistry. Protein immobilization was confirmed using X-ray photoelectron spectroscopy (XPS) by the presence of peaks corresponding with nitrogen. Self-developed indirect ELISA was performed to assess the functionality of the 3D platform in comparison with a standard 2D tissue culture plate (TCP) system, using whole unstimulated saliva samples from 14 non-vaccinated and 20 vaccinated participants (1- and 3- weeks post-dose 1; 3 days, 1 week and 3 weeks post-dose 2) without prior SARS-CoV-2 infection. The three-dimensional S1-RBD PCL scaffolds, while demonstrating a kinetic trend comparable to 2D TCP, exhibited significantly higher sensitivity and detection levels for all three immunoglobulins assayed (IgG, IgM, and IgA). These novel findings highlight the potential of MEW PCL constructs in the development of improved low-cost, point-of-care, and self-assessing diagnostic platforms for the detection and monitoring of SARS-CoV-2 antibodies.

13.
ACS Appl Mater Interfaces ; 14(19): 22554-22569, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533291

RESUMO

Zinc (Zn) has recently been identified as an auspicious biodegradable metal for medical implants and devices due to its tunable mechanical properties and good biocompatibility. However, the slow corrosion rate of Zn in a physiological environment does not meet the requirements for biodegradable implants, hindering its clinical translation. The present study aimed to accelerate the corrosion rate of pure Zn by utilizing acid etching to roughen the surface and increase the substrate surface area. The effects of acid etching on surface morphology, surface roughness, tensile properties, hardness, electrochemical corrosion and degradation behavior, cytocompatibility, direct cell attachment, and biofilm formation were investigated. Interestingly, acid-treated Zn showed an exceptionally high rate of corrosion (∼226-125 µm/year) compared to untreated Zn (∼62 µm/year), attributed to the increased surface roughness (Ra ∼ 1.12 µm) of acid-etched samples. Immersion tests in Hank's solution revealed that acid etching accelerated the degradation rate of Zn samples. In vitro, MC3T3-E1 cell lines in 50 and 25% conditioned media extracts of treated samples showed good cytocompatibility. Reduced bacterial adhesion, biofilm formation, and dispersion were observed for Staphylococci aureus biofilms cultured on acid-etched pure Zn substrates. These results suggest that the surface modification of biodegradable pure Zn metals by acid etching markedly increases the translation potential of zinc for various biomedical applications.


Assuntos
Ligas , Zinco , Implantes Absorvíveis , Ligas/química , Antibacterianos/farmacologia , Materiais Biocompatíveis , Corrosão , Teste de Materiais , Zinco/química
14.
Free Neuropathol ; 3(9)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35494163

RESUMO

Background: Seeding of pathology related to Alzheimer's disease (AD) and Lewy body disease (LBD) by tissue homogenates or purified protein aggregates in various model systems has revealed prion-like properties of these disorders. Typically, these homogenates are injected into adult mice stereotaxically. Injection of brain lysates into newborn mice represents an alternative approach of delivering seeds that could direct the evolution of amyloid-ß (Aß) pathology co-mixed with either tau or α-synuclein (αSyn) pathology in susceptible mouse models. Methods: Homogenates of human pre-frontal cortex were injected into the lateral ventricles of newborn (P0) mice expressing a mutant humanized amyloid precursor protein (APP), human P301L tau, human wild type αSyn, or combinations thereof. The homogenates were prepared from AD and AD/LBD cases displaying variable degrees of Aß pathology and co-existing tau and αSyn deposits. Behavioral assessments of APP transgenic mice injected with AD brain lysates were conducted. For comparison, homogenates of aged APP transgenic mice that preferentially exhibit diffuse or cored deposits were similarly injected into the brains of newborn APP mice. Results: We observed that lysates from the brains with AD (Aß+, tau+), AD/LBD (Aß+, tau+, αSyn+), or Pathological Aging (Aß+, tau-, αSyn-) efficiently seeded diffuse Aß deposits. Moderate seeding of cerebral amyloid angiopathy (CAA) was also observed. No animal of any genotype developed discernable tau or αSyn pathology. Performance in fear-conditioning cognitive tasks was not significantly altered in APP transgenic animals injected with AD brain lysates compared to nontransgenic controls. Homogenates prepared from aged APP transgenic mice with diffuse Aß deposits induced similar deposits in APP host mice; whereas homogenates from APP mice with cored deposits induced similar cored deposits, albeit at a lower level. Conclusions: These findings are consistent with the idea that diffuse Aß pathology, which is a common feature of human AD, AD/LBD, and PA brains, may arise from a distinct strain of misfolded Aß that is highly transmissible to newborn transgenic APP mice. Seeding of tau or αSyn comorbidities was inefficient in the models we used, indicating that additional methodological refinement will be needed to efficiently seed AD or AD/LBD mixed pathologies by injecting newborn mice.

15.
Cytokine Growth Factor Rev ; 64: 7-11, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115234

RESUMO

Osteoporosis results from dysregulated bone remodeling with increased osteoclast-mediated destruction of bones. We have recently shown in vitro the truncated tryptophanyl-tRNA synthetase (mini-TrpRS)-dependent action of interferon-gamma (IFN-γ) to promote myeloid lineage multinucleation, a fundamental step in the osteoclast formation. In particular, we found that IFN-γ readily induced monocyte aggregation leading to multinuclear giant cell formation that paralleled marked upregulation of mini-TrpRS. However, blockade of mini-TrpRS with its cognate amino acid and decoy substrate D-Tryptophan prevented mini-TrpRS signaling, and markedly reduced the aggregation of monocytes and multinucleation in the presence of IFN. The cell signaling mechanism executed by mini-TrpRS appears inevitably in any inflammatory environment that involves IFN-γ with outcomes depending on the cell type involved. Here, we elaborate on these findings and discuss the potential role of the IFN-γ/mini-TrpRS signaling axis in osteoporosis pathophysiology, which may eventually materialize in a novel therapeutic perspective for this disease.


Assuntos
Osteoporose , Triptofano-tRNA Ligase , Humanos , Interferon gama , Osteoporose/tratamento farmacológico , Ligação Proteica , Transdução de Sinais , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/genética , Triptofano-tRNA Ligase/metabolismo
16.
Trends Cardiovasc Med ; 32(3): 138-142, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571665

RESUMO

Atherosclerosis demonstrates an increased rate of vascular smooth muscle cells (VSMC) plasticity characterized by switching from the differentiated contractile phenotype to a de-differentiated synthetic state. In healthy blood vessels, phenotypic switching represents a fundamental property of VSMC in maintaining vascular homeostasis. However, in atherosclerosis, it is an initial and necessary step in VSMC-derived foam cell formation. These foam cells play a decisive role in atherosclerosis progression since approximately half of all the foam cells are of VSMC origin. Our recent work showed that interferon-gamma (IFN-γ), a primary inflammatory cytokine in progressive atherosclerosis, mediates VSMC phenotype switching exclusively through upregulating mini-tryptophanyl-tRNA synthetase (mini-TrpRS). Here, we discuss the pro-atherosclerotic implication of this phenomenon that inevitably occurs in the context of a more complex regulation mediated by IFN-γ. An emerging therapeutic option for patients with progressive atherosclerosis is also discussed.


Assuntos
Aterosclerose , Citocinas , Aterosclerose/terapia , Humanos , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Transdução de Sinais
17.
Sci Rep ; 11(1): 17451, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465809

RESUMO

Inflammation, vascular smooth muscle cell apoptosis and oxidative stress are believed to play important roles in abdominal aortic aneurysm (AAA) pathogenesis. Human kallistatin (KAL; gene SERPINA4) is a serine proteinase inhibitor previously shown to inhibit inflammation, apoptosis and oxidative stress. The aim of this study was to investigate the role of KAL in AAA through studies in experimental mouse models and patients. Serum KAL concentration was negatively associated with the diagnosis and growth of human AAA. Transgenic overexpression of the human KAL gene (KS-Tg) or administration of recombinant human KAL (rhKAL) inhibited AAA in the calcium phosphate (CaPO4) and subcutaneous angiotensin II (AngII) infusion mouse models. Upregulation of KAL in both models resulted in reduction in the severity of aortic elastin degradation, reduced markers of oxidative stress and less vascular smooth muscle apoptosis within the aorta. Administration of rhKAL to vascular smooth muscle cells incubated in the presence of AngII or in human AAA thrombus-conditioned media reduced apoptosis and downregulated markers of oxidative stress. These effects of KAL were associated with upregulation of Sirtuin 1 activity within the aortas of both KS-Tg mice and rodents receiving rhKAL. These results suggest KAL-Sirtuin 1 signalling limits aortic wall remodelling and aneurysm development through reductions in oxidative stress and vascular smooth muscle cell apoptosis. Upregulating KAL may be a novel therapeutic strategy for AAA.


Assuntos
Aneurisma da Aorta Abdominal/prevenção & controle , Apoptose , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Serpinas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/etiologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Serpinas/sangue
18.
Nanomaterials (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34361246

RESUMO

Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 µm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV-miRNAs, EV-circRNAs, EV-mRNAs and EV-lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications.

19.
Cytokine ; 142: 155486, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721618

RESUMO

Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.


Assuntos
Células Gigantes/citologia , Células Gigantes/enzimologia , Interferon gama/farmacologia , Monócitos/citologia , Triptofano-tRNA Ligase/metabolismo , Agregação Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Gigantes/efeitos dos fármacos , Humanos , Modelos Biológicos , Receptores Purinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células THP-1 , Regulação para Cima/efeitos dos fármacos
20.
J Am Heart Assoc ; 10(5): e019372, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33599139

RESUMO

Background Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. The kinin B2 receptor agonist, bradykinin, has been implicated in AAA pathogenesis through promoting inflammation. Bradykinin is generated from high- and low-molecular-weight kininogen by the serine protease kallikrein-1. The aims of this study were first to examine the effect of neutralizing kallikrein-1 on AAA development in a mouse model and second to test how blocking kallikrein-1 affected cyclooxygenase-2 and prostaglandin E2 in human AAA explants. Methods and Results Neutralization of kallikrein-1 in apolipoprotein E-deficient (ApoE-/-) mice via administration of a blocking antibody inhibited suprarenal aorta expansion in response to angiotensin (Ang) II infusion. Kallikrein-1 neutralization decreased suprarenal aorta concentrations of bradykinin and prostaglandin E2 and reduced cyclooxygenase-2 activity. Kallikrein-1 neutralization also decreased protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation and reduced levels of active matrix metalloproteinase 2 and matrix metalloproteinase 9. Kallikrein-1 blocking antibody reduced levels of cyclooxygenase-2 and secretion of prostaglandin E2 and active matrix metalloproteinase 2 and matrix metalloproteinase 9 from human AAA explants and vascular smooth muscle cells exposed to activated neutrophils. Conclusions These findings suggest that kallikrein-1 neutralization could be a treatment target for AAA.


Assuntos
Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/terapia , Dinoprostona/metabolismo , Músculo Liso Vascular/patologia , Calicreínas Teciduais/antagonistas & inibidores , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Biópsia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA