Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838512

RESUMO

Light-emitting diodes (LEDs) have emerged as efficient light sources for promoting in vitro plant growth and primary and secondary metabolite biosynthesis. This study investigated the effects of blue, red, and white-red LED lights on plant biomass growth, photosynthetic pigments, soluble sugars, phenolic compounds, the production of Amaryllidaceae alkaloids, and the activities of antioxidant enzymes in Leucojum aestivum L. cultures. A white fluorescent light was used as a control. The plants that were grown under white-red and red light showed the highest fresh biomass increments. The blue light stimulated chlorophyll a, carotenoid, and flavonoid production. The white-red and blue lights were favourable for phenolic acid biosynthesis. Chlorogenic, p-hydroxybenzoic, caffeic, syringic, p-coumaric, ferulic, sinapic, and benzoic acids were identified in plant materials, with ferulic acid dominating. The blue light had a significant beneficial effect both on galanthamine (4.67 µg/g of dry weight (DW)) and lycorine (115 µg/g DW) biosynthesis. Red light treatment increased catalase and superoxide dismutase activities, and high catalase activity was also observed in plants treated with white-red and blue light. This is the first report to provide evidence of the effects of LED light on the biosynthesis of phenolic acid and Amaryllidaceae alkaloids in L. aestivum cultures, which is of pharmacological importance and can propose new strategies for their production.


Assuntos
Alcaloides de Amaryllidaceae , Catalase , Clorofila A , Hidroxibenzoatos , Luz , Plantas , Antioxidantes
2.
Sci Rep ; 12(1): 13700, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953692

RESUMO

Leucojum aestivum is known for its ability to biosynthesize alkaloids with therapeutic properties, among which galanthamine used for the treatment of Alzheimer's disease. New sources of this alkaloid are still being explored. In this study, a novel strain PLV of endophytic bacterium Paenibacillus lautus was isolated from in vitro L. aestivum plants. We report the whole genome sequence of that strain and its capacity to produce alkaloids and growth regulators. The effect of elicitation with autoclaved bacteria on the production of alkaloids was examined. Ten alkaloids were identified in bacteria extracts: galanthamine, lycorine, ismine, lycoramine, haemanthamine, tazettine, galanthine, homolycorine, 1,2-dihydrochlidanthine, and hippeastrine. The mean contents of galanthamine and lycorine were 37.51 µg/g of dry weight (DW) and 129.93 µg/g of DW, respectively. Moreover, isolated P. lautus strain synthesized: indole-3-acetic acid, t-zeatin, c-zeatin, kinetin, gibberellin A1, abscisic acid, salicylic acid, benzoic acid. In vitro elicitation of cultures with P. lautus increased dry biomass, stimulated galanthamine and lycorine production, contributed to 8,9-desmethylenebis (oxy)-7,9 dimethoxy-crinan biosynthesis, change pigments content, and antioxidant enzymes activities. Our findings for the first time point out that galanthamine can be synthesized by an microorganism. Moreover isolated strain can be used as a new elictor of Amaryllidaceae alkaloids biosynthesis.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Liliaceae , Bactérias , Galantamina , Zeatina
3.
PeerJ ; 8: e8688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211230

RESUMO

BACKGROUND: Leucojum aestivum L. is an important medicinal plant which produces Amaryllidaceae alkaloids, especially galanthamine and lycorine. Research is currently exploring the possibility of producing these alkaloids using biotechnological methods, including in vitro cultures. The biosynthesis of alkaloids may be affected by the types and concentrations of carbohydrate sources used in the medium. In the present investigation we performed such studies on in vitro cultures of L. aestivum with a view to obtaining plant material of good quality, characterized, in particular, by a high content of valuable Amaryllidaceae alkaloids. METHODS: We examined the effects of various types of carbohydrate sources-sucrose, glucose, fructose and maltose-at different concentrations (30, 60 and 90 g/L)-on the quality of L. aestivum plants grown in the RITA® bioreactor. The plants' quality was assessed by their biomass increments, as well by as analysing photosynthetic pigments, endogenous sugar, phenolics and Amaryllidaceae alkaloid content. We also investigated the effect of sugars on the activity of the antioxidant enzymes catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD). RESULTS: The highest biomass increments were observed in plants cultivated in the medium containing 90 g/L sucrose. The highest CAT activity was noted in cultures growing in the medium supplemented with 90 g/L maltose, while the highest POD activity was observed in the presence of 90 g/L fructose and 60 g/L maltose. No differences in SOD activity were observed. Moreover, the sugars did not affect the contents of chlorophyll a and carotenoids, whereas the highest amount of chlorophyll b was recorded in plants growing in the medium with 60 g/L maltose. No statistically significant differences were observed in the contents of endogenous sugars and phenolics in any in vitro conditions. However, the addition of sugar had a decisive effect on the biosynthesis of the Amaryllidaceae alkaloids. The highest distribution of alkaloids occurred in plants cultured in the medium containing 60 g/L sucrose. Six Amaryllidaceae alkaloids were detected in the plant tissue. The addition of 30 g/L fructose in the medium resulted in the accumulation of five alkaloids, including ismine, which was not identified in other analysed tissues. The highest concentration of galanthamine was observed in plants cultured in the presence of 30 g/L fructose and 60 g/L sucrose (39.2 and 37.5 µg/g of dry weight (DW), respectively). The plants grown in the medium containing 60 g/L sucrose exhibited the highest lycorine content (1048 µg/g of DW). CONCLUSIONS: The type and concentration of sugar used in the medium have an essential influence on the biosynthesis of Amaryllidaceae alkaloids in L. aestivum plants cultured in a RITA® bioreactor. The results point to an interesting approach for commercial production of galanthamine and lycorine.

4.
PeerJ ; 6: e5009, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942687

RESUMO

BACKGROUND: Melatonin (MEL) is a signaling molecule in plants that affects developmental processes during vegetative and reproductive growth. Investigations have proved that exogenously applied MEL also has the potential to improve seed germination and plant development. METHODS: In the present study, seeds of stevia, a species with a very low germination rate, were germinated on an agar gel (AG) containing MEL at various concentrations (5, 20, 100, and 500 µM) in light. Seeds germinated on AG without MEL were used as controls. For the first 24 or 48 h of germination, the seeds were maintained in darkness as a pre-incubation step. Some seeds were not exposed to this pre-incubation step. RESULTS: At concentrations of 20 and 5 µM, MEL significantly improved germination, but only in seeds pre-incubated in darkness for 24 h (p < 0.001). At concentrations of 100 and 500 µM, MEL had an inhibitory effect on germination, regardless of the pre-incubation time. Melatonin also affected plantlet properties. At a concentration of 20 µM, MEL increased plantlet fresh weight and leaf numbers. At a concentration of 5 µM, it promoted plantlet height. Regarding root development, the most favorable MEL concentration was 500 µM. Biochemical analysis revealed that MEL promoted higher pigment concentrations but hampered superoxide dismutase activity. On the other hand, the concentrations of sugars and phenolics, as well as the activities of catalase and peroxidase, increased at a MEL concentration of 500 µM. DISCUSSION: The results suggest that MEL can improve germination of positively photoblastic stevia seeds and that it can play a role in plantlet development. However, the effects observed in the present study depended on the quantity of MEL that was applied.

5.
Nat Genet ; 48(6): 657-66, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27158781

RESUMO

We report a high-quality chromosome-scale assembly and analysis of the carrot (Daucus carota) genome, the first sequenced genome to include a comparative evolutionary analysis among members of the euasterid II clade. We characterized two new polyploidization events, both occurring after the divergence of carrot from members of the Asterales order, clarifying the evolutionary scenario before and after radiation of the two main asterid clades. Large- and small-scale lineage-specific duplications have contributed to the expansion of gene families, including those with roles in flowering time, defense response, flavor, and pigment accumulation. We identified a candidate gene, DCAR_032551, that conditions carotenoid accumulation (Y) in carrot taproot and is coexpressed with several isoprenoid biosynthetic genes. The primary mechanism regulating carotenoid accumulation in carrot taproot is not at the biosynthetic level. We hypothesize that DCAR_032551 regulates upstream photosystem development and functional processes, including photomorphogenesis and root de-etiolation.


Assuntos
Evolução Biológica , Carotenoides/metabolismo , Daucus carota/genética , Genoma de Planta , Daucus carota/classificação , Daucus carota/metabolismo , Genes Reguladores , Ligação Genética , Marcadores Genéticos , Filogenia , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA