Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 136: 102400, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38342331

RESUMO

Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.


Assuntos
Claustrum , Neuropeptídeos , Animais , Humanos , Masculino , Nucleobindinas/metabolismo , Claustrum/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Neurônios/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
2.
J Neural Transm (Vienna) ; 131(3): 275-280, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38253928

RESUMO

Nitric oxide (NO) has been thought to be a novel factor involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about potential crosstalk between neuronal NO signaling and neuroleptics action. The present work was, therefore, focused on gene expression of neuronal NO synthase (nNOS) in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at dose 5 mg/kg daily). All individuals were killed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain, and for both descriptive and quantitative analysis of nNOS protein distribution in selected brain structures. Long-term treatment with olanzapine is reflected in different changes in the number of enzyme-expressing cells in the rat brain. Olanzapine decreased the number of nNOS-expressing cells and possibly reduced NO synthesis in the rat striatum. Olanzapine can be taken into account as a potential inhibitor of NO synthesis in the rat striatum.


Assuntos
Antipsicóticos , Corpo Estriado , Animais , Masculino , Ratos , Antipsicóticos/farmacologia , Corpo Estriado/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Olanzapina/farmacologia , Ratos Sprague-Dawley
3.
Pharmacol Rep ; 73(4): 1188-1194, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33928538

RESUMO

BACKGROUND: Phoenixin, spexin and nesfatin-1 belong to a family of newly discovered multifunctional neuropeptides that play regulatory roles in several brain structures and modulate the activity of important neural networks. However, little is known about their expression and action at the level of brainstem. The present work was, therefore, focused on gene expression of the aforementioned peptides in the brainstem of rats chronically treated with olanzapine, a second generation antipsychotic drug. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at dose 5 mg/kg daily). All individuals were killed under anesthesia and the brainstem excised. Total mRNA was isolated from homogenized samples of both structures and the RT-PCR method was used for estimation of related SMIM20/phoenixin, NPQ/spexin and NUCB2/nesfatin-1 gene expression. RESULTS: Long-term treatment with olanzapine is reflected in qualitatively different changes in expression of examined neuropeptides mRNA in the rat brainstem. Olanzapine significantly decreased NPQ/spexin mRNA expression, but increased SMIM20/phoenixin mRNA level in the rat brainstem; while NUCB2/nesfatin-1 mRNA expression remained unchanged. CONCLUSIONS: Olanzapine can affect novel peptidergic signaling in the rat brainstem. This may cautiously suggest the presence of an alternative mode of its action.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Nucleobindinas/metabolismo , Olanzapina/farmacologia , Hormônios Peptídicos/metabolismo , Animais , Antipsicóticos/farmacologia , Tronco Encefálico/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Pharmacol Rep ; 73(4): 1164-1169, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33843023

RESUMO

BACKGROUND: Adult neurogenesis observed both in the subventricular zone (SVZ) and hippocampus may be regulated and modulated by several endogenous factors, xenobiotics and medications. Classical and atypical antipsychotic drugs are able to affect neuronal and glial cell proliferation in the rat brain. The main purpose of this structural study was to determine whether chronic chlorpromazine treatment affects adult neurogenesis in the canonical sites of the rat brain. At present, the clinical application of chlorpromazine is rather limited; however, it may still represent an important model in basic neuropharmacological and toxicological studies. METHODS: The number of neural progenitors and immature neurons was enumerated using immunofluorescent detection of Sox2, Musashi1 and doublecortin (DCX) expression within SVZ. RESULTS: Chlorpromazine has a depressive effect on the early phase of adult neurogenesis in the rat subventricular zone (SVZ), as the mean number of Sox-2 immunoexpressing cells decreased following treatment. CONCLUSION: Collectively, these results may suggest that long-term treatment with chlorpromazine may decrease neurogenic stem/progenitor cell formation in the rat SVZ and may affect rostral migratory stream formation.


Assuntos
Clorpromazina/efeitos adversos , Proteína Duplacortina/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Antipsicóticos/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Mol Biol Rep ; 47(10): 8273-8278, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914264

RESUMO

Neuropeptides are important, multifunctional regulatory factors of the nervous system, being considered as a novel, atypical sites of antidepressants action. It has already been proven that some of them, such as selective serotonin reuptake inhibitors (SSRI), are able to affect peptidergic pathways in various brain regions. Despite these reports, there is so far no reports regarding the effect of treatment with SSRIs on brain proopiomelanocortin (POMC), kisspeptin, Kiss1R and MCHR1 gene expression. In the current study we examined POMC, kisspeptin, Kiss1R and MCHR1 mRNA expression in the selected brain structures (hypothalamus, hippocampus, amygdala, striatum, cerebellum and brainstem) of rats chronically treated with a 10 mg/kg dose of escitalopram using quantitative Real-Time PCR. Long-term treatment with escitalopram led to the upregulation of MCHR1 expression in the rat amygdala. Kisspeptin mRNA level was also increased in the amygdala, but Kiss1R mRNA expressions were elevated in the hippocampus, hypothalamus and cerebellum. POMC mRNA expressions were in turn decreased in the hippocampus, amygdala, cerebellum and brainstem. These results may support the hypothesis that these neuropeptides may be involved in the site-dependent actions of SSRI antidepressants. This is the first report of the effects of escitalopram on POMC, kisspeptin, Kiss1R and MCHR1 in animal brain. Our findings shed a new light on the pharmacology of SSRIs and may contribute to a better understanding of the alternative, neuropeptide-dependent modes of antidepressant action.


Assuntos
Encéfalo/metabolismo , Citalopram/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Kisspeptinas/biossíntese , Pró-Opiomelanocortina/biossíntese , Receptores de Kisspeptina-1/biossíntese , Receptores de Somatostatina/biossíntese , Animais , Masculino , Ratos , Ratos Sprague-Dawley
6.
J Neural Transm (Vienna) ; 126(3): 349-355, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770997

RESUMO

Neuropeptides are involved in various brain activities being able to control a wide spectrum of higher mental functions. The purpose of this concise structural investigation was to detect the possible immunoreactivity of the novel multifunctional neuropeptide nesfatin-1 within the human bed nucleus of the stria terminalis (BNST). The BNST is involved in the mechanism of fear learning, integration of stress and reward circuits, and pathogenesis of addiction. Nesfatin-1-expressing neurons were identified for the first time in several regions of the BNST using both immunohistochemical and fluorescent methods. This may implicate a potential contribution of this neuropeptide to the BNST-related mechanisms of stress/reward responses in the human brain.


Assuntos
Neurônios/citologia , Neurônios/metabolismo , Nucleobindinas/biossíntese , Núcleos Septais/citologia , Núcleos Septais/metabolismo , Humanos
7.
Clin Exp Pharmacol Physiol ; 46(4): 350-359, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30609107

RESUMO

The recently discovered peptide phoenixin (PNX) and its receptor GPR173 are novel factors that exhibit a large spectrum of regulatory activity, especially when considered as a central modulator of GnRH-related hormonal control of reproductive processes. It has been already proven that GnRH agonists and antagonists can modulate peptidergic signalling in the HPG axis. Despite these findings, there is so far no information regarding the influence of treatment with GnRH analogues on SMIM20/phoenixin signalling in the hypothalamic-pituitary-gonadal axis. In the current study, SMIM20/phoenixin and GPR173 mRNA levels were measured in the hypothalamus, pituitary and ovaries of female rats in the dioestrus phase following treatment with GnRH-R agonist (buserelin) and antagonist (cetrorelix) using quantitative real-time PCR. The serum PNX concentrations were also estimated with ELISA technique. The hypothalamic, hypophyseal and especially ovarian levels of SMIM20 mRNA were increased after both buserelin and cetrorelix administration. The GPR173 expressions were in turn decreased in the hypothalamus and pituitary. Treatment with the GnRH analogues led to the modulation of SMIM20/phoenixin and GPR173 mRNA expression in the female rat hypothalamic-pituitary-gonadal axis. By identifying buserelin and cetrorelix as novel modulators of phoenixin signalling in the animal HPG axis, these results cast new light on the GnRH analogues mode of action and contribute to a better understanding of the mechanisms responsible for the hormonal control of reproduction.

8.
Anat Histol Embryol ; 47(6): 613-617, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30246325

RESUMO

Ribbon synapses located exclusively within retinal, cochlear and vestibular connections belong to the most interesting cellular structures but their molecular nature and functions had remained unclear. The study has provided a descriptive morphological analysis of rat eye ribbon synapses using high-resolution transmission electron microscopy (TEM). An original collection of untypical, rarely present in the literature sagittal or tangential sections through the single RIBEYE domain of the particular ribbon have been delivered.


Assuntos
Cóclea/inervação , Órgão Espiral/anatomia & histologia , Retina/anatomia & histologia , Sinapses/fisiologia , Vestíbulo do Labirinto/inervação , Animais , Cóclea/anatomia & histologia , Masculino , Microscopia Eletrônica de Transmissão , Ratos , Ratos Sprague-Dawley , Vestíbulo do Labirinto/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA