Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Parasitol ; 217: 107934, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698075

RESUMO

The inadequacy of available treatments for leishmaniasis has presented up to 40% therapeutic failure. This fact suggests an urgency in the discovery of new drugs or alternative approaches for treating this disease. The objective of this study was to evaluate the antileishmanial activity of combined therapy between crotamine (CTA) from Crotalus durissus terrificus and the pentavalent antimonial Glucantime® (GLU). The assays were in vitro performed measuring the inhibition of Leishmania amazonensis amastigotes, followed by the evaluation of cellular production of cytokines and nitrites. After that, analytical methods were performed in order to characterize the molecules involved in the study by Mass Spectrometry, molecular affinity through an in silico assay and Surface Plasmon Resonance. In vivo experiments with BALB/c mice were performed by analyzing parasitemia, lesion size and immunological mediators. In the in vitro experiments, the pharmacological association improved the inhibition of the amastigotes, modulated the production of cytokines and nitric oxide. The therapy improved the effectiveness of the GLU, demonstrating a decreased parasitemia in the infected tissues. Altogether, the results suggest that the combined approach with CTA and GLU may be a promising alternative for the treatment of cutaneous leishmaniasis.


Assuntos
Antiprotozoários/uso terapêutico , Venenos de Crotalídeos/uso terapêutico , Crotalus , Leishmania mexicana/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Antimoniato de Meglumina/uso terapêutico , Animais , Antiprotozoários/farmacologia , Venenos de Crotalídeos/farmacologia , Combinação de Medicamentos , Interleucina-12/sangue , Interleucina-12/metabolismo , Leishmania mexicana/isolamento & purificação , Linfonodos/parasitologia , Macrófagos Peritoneais , Espectrometria de Massas , Antimoniato de Meglumina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Óxido Nítrico/metabolismo , Nitritos/análise , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
2.
BMC Complement Altern Med ; 15: 165, 2015 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26048712

RESUMO

BACKGROUND: 3beta,6beta,16beta-trihydroxylup-20(29)-ene is a lupane triterpene isolated from Combretum leprosum fruit. The lupane group has been extensively used in studies on anticancer effects; however, its possible activity against protozoa parasites is yet poorly known. The high toxicity of the compounds currently used in leishmaniasis chemotherapy stimulates the investigation of new molecules and drug targets for antileishmanial therapy. METHODS: The activity of 3beta,6beta,16beta-trihydroxylup-20(29)-ene was evaluated against Leishmania (L.) amazonensis by determining the cytotoxicity of the compound on murine peritoneal macrophages, as well as its effects on parasite survival inside host cells. To evaluate the effect of this compound on intracellular amastigotes, cultures of infected macrophages were treated for 24, 48 and 96 h and the percentage of infected macrophages and the number of intracellular parasites was scored using light microscopy. RESULTS: Lupane showed significant activity against the intracellular amastigotes of L. (L.) amazonensis. The treatment with 109 µM for 96 h reduced in 80 % the survival index of parasites in BALB/c peritoneal macrophages. At this concentration, the triterpene caused no cytotoxic effects against mouse peritoneal macrophages. Ultrastructural analyses of L. (L.) amazonensis intracellular amastigotes showed that lupane induced some morphological changes in parasites, such as cytosolic vacuolization, lipid body formation and mitochondrial swelling. Bioinformatic analyses through molecular docking suggest that this lupane has high-affinity binding with DNA topoisomerase. CONCLUSION: Taken together, our results have showed that the lupane triterpene from C. leprosum interferes with L. (L.) amazonensis amastigote replication and survival inside vertebrate host cells and bioinformatics analyses strongly indicate that this molecule may be a potential inhibitor of topoisomerase IB. Moreover, this study opens major prospects for the development of novel chemotherapeutic agents with leishmanicidal activity.


Assuntos
Combretum/química , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/parasitologia , Macrófagos Peritoneais/parasitologia , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Citoplasma/parasitologia , DNA Topoisomerases Tipo I/efeitos dos fármacos , Feminino , Frutas/química , Técnicas In Vitro , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Fitoterapia , Extratos Vegetais/química , Triterpenos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA