Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Biochimie ; 220: 167-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158037

RESUMO

Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.


Assuntos
Antifúngicos , Azóis , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Azóis/farmacologia , Azóis/química , Azóis/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
3.
Biochimie ; 205: 27-39, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586567

RESUMO

We report herein the synthesis of two non-ionic amphiphiles with a cholesterol hydrophobic moiety that can be used as chemical additives for biochemical studies of membrane proteins. They were designed to show a high similarity with the planar steroid core of cholesterol and small-to-medium polar head groups attached at the C3 position of ring-A on the sterol skeleton. The two Chol-Tris and Chol-DG have a Tris-hydroxymethyl and a branched diglucose polar head group, respectively, which provide them sufficient water solubility when mixed with the "gold standard" detergent n-Dodecyl-ß-D-Maltoside (DDM). The colloidal properties of these mixed micelles were investigated by means of surface tension (SFT) measurements and dynamic light scattering (DLS) experiments and showed the formation of globular micelles of about 8 nm in diameter with a critical micellar concentration of 0.20 mM for DDM:Chol-DG and 0.22 mM for DDM:Chol-Tris. We showed that mixed micelles do not alter the extraction potency of a G-protein coupled receptor (GPCR): the human adenosine A2A receptor (A2AR). The thermostabilizing effect of the mixed micelles was confirmed on two GPCRs, A2AR and the growth hormone secretagogue receptor (GHSR). Finally, these two mixed micelles were found suitable for the purification of an active form of A2AR which remained able to bind two ligands of different class i.e. the specific agonist CGS-21680 and the specific inverse agonist ZM-241385. This suggests that Chol-Tris and Chol-DG may be used as a non-ionic alternative to the cholesteryl hemisuccinate (CHS) stabilizing agent.


Assuntos
Proteínas de Membrana , Micelas , Humanos , Proteínas de Membrana/química , Agonismo Inverso de Drogas , Colesterol/química , Receptores Acoplados a Proteínas G , Detergentes/química
4.
Methods Mol Biol ; 2507: 175-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773582

RESUMO

The production and purification are the first steps required in any functional or structural study of a protein of interest. In the case of membrane proteins, these tasks can be difficult due to low expression levels and the necessity to extract them from their membrane environment. This chapter describes a convenient method based on GFP tagged to the membrane protein to facilitates these steps. Production is carried out in the yeast S. cerevisiae and purification steps are carried out and monitored taking advantage of an anti-GFP nanobody. We show how GFP can be a very helpful tool for controlling the correct addressing of the protein and for probing and optimizing purification. These methods are described here for producing and purifying CaCdr1p, an ABC exporter conferring multiantifungal resistance to C. albicans. This purification method can be amenable to any other GFP-tagged protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Candida albicans/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Fungi (Basel) ; 8(5)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628792

RESUMO

The Major Facilitator Superfamily (MFS) drug:H+ antiporter CaMdr1, from Candida albicans, is responsible for the efflux of structurally diverse antifungals. MFS members share a common fold of 12−14 transmembrane helices (TMHs) forming two N- and C-domains. Each domain is arranged in a pseudo-symmetric fold of two tandems of 3-TMHs that alternatively expose the drug-binding site towards the inside or the outside of the yeast to promote drug binding and release. MFS proteins show great diversity in primary structure and few conserved signature motifs, each thought to have a common function in the superfamily, although not yet clearly established. Here, we provide new information on these motifs by having screened a library of 64 drug transport-deficient mutants and their corresponding suppressors spontaneously addressing the deficiency. We found that five strains recovered the drug-resistance capacity by expressing CaMdr1 with a secondary mutation. The pairs of debilitating/rescuing residues are distributed either in the same TMH (T127ATMH1- > G140DTMH1) or 3-TMHs repeat (F216ATMH4- > G260ATMH5), at the hinge of 3-TMHs repeats tandems (R184ATMH3- > D235HTMH4, L480ATMH10- > A435TTMH9), and finally between the N- and C-domains (G230ATMH4- > P528HTMH12). Remarkably, most of these mutants belong to the different signature motifs, highlighting a mechanistic role and interplay thought to be conserved among MFS proteins. Results also point to the specific role of TMH11 in the interplay between the N- and C-domains in the inward- to outward-open conformational transition.

6.
Adv Protein Chem Struct Biol ; 123: 163-191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485482

RESUMO

ATP-binding cassette (ABC) superfamily comprises membrane transporters that power the active transport of substrates across biological membranes. These proteins harness the energy of nucleotide binding and hydrolysis to fuel substrate translocation via an alternating-access mechanism. The primary structural blueprint is relatively conserved in all ABC transporters. A transport-competent ABC transporter is essentially made up of two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). While the NBDs are conserved in their primary sequence and form at their interface two nucleotide-binding sites (NBSs) for ATP binding and hydrolysis, the TMDs are variable among different families and form the translocation channel. Transporters catalyzing the efflux of substrates from the cells are called exporters. In humans, they range from A to G subfamilies, with the B, C and G subfamilies being involved in chemoresistance. The recently elucidated structures of ABCG5/G8 followed by those of ABCG2 highlighted a novel structural fold that triggered extensive research. Notably, suppressor genetics in the orthologous yeast Pleiotropic Drug Resistance (PDR) subfamily proteins have pointed to a crosstalk between TMDs and NBDs modulating substrate export. Considering the structural information provided by their neighbors from the G subfamily, these studies provide mechanistic keys and posit a functional role for the non-hydrolytic NBS found in several ABC exporters. The present chapter provides an overview of structural and functional aspects of ABCG proteins with a special emphasis on the yeast PDR systems.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Modelos Moleculares , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sítios de Ligação , Membrana Celular/genética , Humanos
7.
Eur J Med Chem ; 211: 113017, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223263

RESUMO

Multidrug resistance membrane pumps reduce the efficacy of chemotherapies by exporting a wide panel of structurally-divergent drugs. Here, to take advantage of the polyspecificity of the human Breast Cancer Resistance Protein (BCRP/ABCG2) and the dimeric nature of this pump, new dimeric indenoindole-based inhibitors from the monomeric α,ß-unsaturated ketone 4b and phenolic derivative 5a were designed. A library of 18 homo/hetero-dimers was synthesised. Homo-dimerization shifted the inhibition efficacy from sub-micromolar to nanomolar range, correlated with the presence of 5a, linked by a 2-6 methylene-long linker. Non-toxic, the best dimers displayed a therapeutic ratio as high as 70,000. It has been found that the high potency of the best compound 7b that displays a KI of 17 nM is due to an uncompetitive behavior toward mitoxantrone efflux and specific for that drug, compared to Hoechst 33342 efflux. Such property may be useful to target such anticancer drug efflux mediated by ABCG2. Finally, at a molecular level, an uncompetitive mechanism by which substrate promotes inhibitor binding implies that at least 2 ligands should bind simultaneously to the drug-binding pocket of ABCG2.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/síntese química , Indóis/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 202: 112503, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653696

RESUMO

The Breast Cancer Resistance Protein (BCRP/ABCG2) belongs to the G class of ABC (ATP-Binding Cassette) proteins, which is known as one of the main transporters involved in the multidrug resistance (MDR) phenotype that confer resistance to anticancer drugs. The aim of this study was to design, synthesize and develop new potent and selective inhibitors of BCRP that can be used to abolish MDR and potentialize clinically used anticancer agents. In previous reports, we showed the importance of chromone scaffold and hydrophobicity for the inhibition of ABC transporters. In the present study we report the design and development of chromones linked to one or two amino acids residues that are either hydrophobic or found in the structure of FTC, one of most potent (but highly toxic) inhibitors of BCRP. Herewith, we report the synthesis and evaluation of 13 compounds. The studied molecules were found to be not toxic and showed strong inhibition activity as well as high selectivity toward BCRP. The highest activity was obtained with the chromone bearing a valine residue (9c) which showed an inhibition activity against BCRP of 50 nM. The rationalization of the inhibition potential of the most active derivatives was performed through docking studies. Taken together, the ease of synthesis and the biological profile of these compounds render them as promising candidates for further development in the field of anticancer therapy.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Cromonas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas de Neoplasias/metabolismo , Relação Estrutura-Atividade
9.
Biochim Biophys Acta Biomembr ; 1862(2): 183131, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734312

RESUMO

ATP-binding cassette (ABC) transporters couple ATP binding and hydrolysis to the translocation of allocrites across membranes. Two shared nucleotide-binding sites (NBS) participate in this cycle. In asymmetric ABC pumps, only one of them hydrolyzes ATP, and the functional role of the other remains unclear. Using a drug-based selection strategy on the transport-deficient mutant L529A in the transmembrane domain of the Candida albicans pump Cdr1p; we identified a spontaneous secondary mutation restoring drug-translocation. The compensatory mutation Q1005H was mapped 60 Å away, precisely in the ABC signature sequence of the non-hydrolytic NBS. The same was observed in the homolog Cdr2p. Both the mutant and suppressor proteins remained ATPase active, but remarkably, the single Q1005H mutant displayed a two-fold reduced ATPase activity and a two-fold increased drug-resistance as compared to the wild-type protein, pointing at a direct control of the non-hydrolytic NBS in substrate-translocation through ATP binding in asymmetric ABC pumps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina/metabolismo , Antifúngicos/farmacologia , Proteínas Fúngicas/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Ligação Proteica
10.
Res Microbiol ; 170(8): 417-425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562919

RESUMO

ABC transporters of the Pleiotropic Drug Resistance (PDR) family are the main actors of antifungal resistance in pathogenic fungi. While their involvement in clinical resistant strains has been proven, their transport mechanism remains unclear. Notably, one hallmark of PDR transporters is their asymmetry, with one canonical nucleotide-binding site capable of ATP hydrolysis while the other site is not. Recent publications reviewed here show that the so-called "deviant" site is of crucial importance for drug transport and is a step towards alleviating the mystery around the existence of non-catalytic binding sites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/metabolismo , Candida albicans/metabolismo , Farmacorresistência Fúngica/fisiologia , Antifúngicos/farmacologia , Sítios de Ligação/fisiologia , Transporte Biológico/fisiologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/patologia , Humanos
11.
Open Vet J ; 9(2): 120-125, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31360650

RESUMO

Crested screamers, a unique, mainly terrestrial avian species native to South America, are known to have a markedly high chick mortality rate in captivity, ranging from 61% to 94%; however, there is very limited information on this species' natural history within the literature, and even less about common diseases that affect them. Four captive-born crested screamer chicks (Chauna torquata) at a U.S. zoological institution died acutely from different causes over the course of 2.5 months. Although a hands-off approach was initially taken, each chick became acutely weak on exhibit and medical intervention was deemed necessary, but proved unsuccessful in all cases. Necropsy results of the chicks revealed various causes of death, including acute Escherichia coli colitis, aspiration pneumonia complicated by concurrent gastrointestinal Candidiasis, severe dehydration and emaciation, and acute amoebic gastroenteritis. No direct associations were found between these deaths and diet or husbandry; however, the limited literature on this topic suspects inadequate husbandry and immunosuppression to be the greatest cause of chick mortality in this species. The cases presented here are consistent with this hypothesis, but further exemplify the limited knowledge of this species and the need to optimize their survivability and proliferation in captivity.


Assuntos
Anseriformes , Doenças das Aves/mortalidade , Doença Aguda/mortalidade , Animais , Animais de Zoológico , Arizona/epidemiologia , Doenças das Aves/etiologia , Doenças das Aves/microbiologia , Doenças das Aves/parasitologia , Evolução Fatal
12.
Toxicol Appl Pharmacol ; 362: 136-149, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391378

RESUMO

Multidrug resistance (MDR) in cancer cells is often associated with overexpression of ATP-binding cassette (ABC) transporters, including P-glycoprotein (P-gp/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1) and breast cancer resistance protein (BCRP/ABCG2). Modulators of these transporters might be helpful in overcoming MDR. Moreover, exploiting collateral sensitivity (CS) could be another approach for efficient treatment of cancer. Twelve novel 5-oxo-hexahydroquinoline derivatives bearing different aromatic substitutions at C4, while having 2-pyridyl alkyl carboxylate substituents at the C3 were synthesized and evaluated for MDR reversal activity by flow cytometric determination of rhodamine 123, calcein and mitoxantrone accumulations in P-gp, MRP1 and BCRP-overexpressing cell lines, respectively. Furthermore, to confirm the P-gp inhibitory activity, the effect of compounds on the reduction of doxorubicin's IC50 of drug-resistant human uterine sarcoma cell line, MES-SA/DX5, was evaluated. Compounds D6, D5 and D3 (bearing 3-chlorophenyl, 2,3-dichlorophenyl and 4-chlorophenyl substituents at C4 position of 5-oxo-hexahydroquinoline core) were the most potent P-gp, MRP1 and BCRP inhibitors, respectively, causing significant MDR reversal at concentrations of 1-10 µM. Additionally, D4 (containing 3-flourophenyl) was the most effective MRP1-dependent CS inducing agent. Overall, chlorine containing compounds D6, C4 and D3 were capable of significant inhibition of all 3 important efflux pumps in cancer cells. Moreover, D6 also induced CS triggered by reducing glutathione efflux. In conclusion, some of the 5-oxo-hexahydroquinoline derivatives are effective efflux pump inhibitors capable of simultaneously blocking 3 important ABC transporters involved in MDR, and represent promising agents to overcome MDR in cancer cells.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Neoplasias/fisiologia , Quinolinas/farmacologia , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Cricetinae , Doxorrubicina/farmacologia , Glutationa/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
13.
Eur J Med Chem ; 163: 853-863, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579125

RESUMO

Two new ruthenium complexes, [Ru(η5-Cp)(PPh3)(2,2'-bipy-4,4'-R)]+ with R = -CH2OH (Ru1) or dibiotin ester (Ru2) were synthesized and fully characterized. Both compounds were tested against two types of breast cancer cells (MCF7 and MDA-MB-231), showing better cytotoxicity than cisplatin in the same experimental conditions. Since multidrug resistance (MDR) is one of the main problems in cancer chemotherapy, we have assessed the potential of these compounds to overcome resistance to treatments. Ru2 showed exceptional selectivity as P-gp inhibitor, while Ru1 is possibly a substrate. In vivo studies in zebrafish showed that Ru2 is well tolerated up to 1.17 mg/L, presenting a LC50 of 5.73 mg/L at 5 days post fertilization.


Assuntos
2,2'-Dipiridil/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Biotina/química , Complexos de Coordenação/farmacologia , Rutênio/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Complexos de Coordenação/química , Resistência a Múltiplos Medicamentos , Humanos , Ligantes , Peixe-Zebra
14.
Inorg Chem ; 57(8): 4629-4639, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29611696

RESUMO

New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η5-MeCp)(PPh3)(4,4'-R-2,2'-bpy)]+ (Ru1, R = H; Ru2, R = CH3; and Ru3, R = CH2OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P21/ c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P21/ n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.


Assuntos
2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , 2,2'-Dipiridil/síntese química , 2,2'-Dipiridil/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Ligantes , Modelos Químicos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Teoria Quântica
15.
Future Med Chem ; 10(7): 725-741, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29570361

RESUMO

AIM: Naringenin (1), isolated in large amount from the aerial parts of Euphorbia pedroi, was chemically derivatized to yield 18 imine derivatives (2-19) and three alkylated derivatives through a Mannich-type reaction (20-22) that were tested as multidrug resistance (MDR) reversers in cancer cells. Results/methodology: While hydrazone (2-4) and azine (5-13) derivatives showed an improvement in their MDR reversal activities against the breast cancer resistance protein, carbohydrazides 14-19 revealed an enhancement in MDR reversal activity toward the multidrug resistance protein 1. CONCLUSION: The observed activities, together with pharmacophoric analysis and molecular docking studies, identified the spatial orientation of the substituents as a key structural feature toward a possible mechanism by which naringenin derivatives may reverse MDR in cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavanonas/farmacologia , Nitrogênio/análise , Transportadores de Cassetes de Ligação de ATP/química , Animais , Neoplasias da Mama/patologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Cromatografia em Camada Fina , Cricetinae , Euphorbia/química , Feminino , Flavanonas/química , Flavanonas/isolamento & purificação , Humanos , Espectrometria de Massas , Camundongos , Simulação de Acoplamento Molecular , Componentes Aéreos da Planta/química , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
16.
Biochim Biophys Acta Biomembr ; 1860(5): 965-972, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29410026

RESUMO

Candida drug resistance 1 (Cdr1), a PDR subfamily ABC transporter mediates efflux of xenobiotics in Candida albicans. It is one of the prime factors contributing to multidrug resistance in the fungal pathogen. One hallmark of this transporter is its asymmetric nature, characterized by peculiar alterations in its nucleotide binding domains. As a consequence, there exists only one canonical ATP-binding site while the other is atypical. Here, we report suppressor analysis on the drug-susceptible transmembrane domain mutant V532D that identified the suppressor mutation W1038S, close to the D-loop of the non-catalytic ATP-binding site. Introduction of the W1038S mutation in the background of V532D mutant conferred resistance for most of the substrates to the latter. Such restoration is accompanied by a severe reduction of ATPase activity, of about 85%, while that of the V532D mutant is half-reduced. Conversely, alanine substitution of the highly conserved aspartate D1033A in that D-loop rendered cells selectively hyper-susceptible to miconazole without an impact on steady-state ATPase activity, suggesting altogether that ATP hydrolysis may not hold the key to restoration mechanism. Analysis of the ABCG5/ABCG8-based 3D-model of Cdr1p suggested that the W1038S substitution leads to the loss of hydrophobic interactions and H-bond with residues of the neighbor NBD1, in the non-catalytic ATP-binding site area. The compensatory effect within TMDs accounting for transport restoration in the V532D-W1038S variant may, therefore, be mainly due to an increase in NBDs mobility at the non-catalytic interface.


Assuntos
Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Nucleotídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Triptofano/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Candida albicans/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína/genética , Triptofano/química , Triptofano/genética
17.
J Mol Biol ; 430(5): 682-694, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29341887

RESUMO

The molecular basis of polyspecificity of Mdr1p, a major drug/H+ antiporter of Candida albicans, is not elucidated. We have probed the nature of the drug-binding pocket by performing systematic mutagenesis of the 12 transmembrane segments. Replacement of the 252 amino acid residues with alanine or glycine yielded 2/3 neutral mutations while 1/3 led to the complete or selective loss of resistance to drugs or substrates transported by the pump. Using the GlpT-based 3D-model of Mdr1p, we roughly categorized these critical residues depending on their type and localization, 1°/ main structural impact ("S" group), 2°/ exposure to the lipid interface ("L" group), 3°/ buried but not facing the main central pocket, inferred as critical for the overall H+/drug antiport mechanism ("M" group) and finally 4°/ buried and facing the main central pocket ("B" group). Among "B" category, 13 residues were essential for the large majority of drugs/substrates, while 5 residues were much substrate-specific, suggesting a role in governing polyspecificity (P group). 3D superposition of the substrate-specific MFS Glut1 and XylE with the MDR substrate-polyspecific MdfA and Mdr1p revealed that the B group forms a common substrate interaction core while the P group is only found in the 2 MDR MFS transporters, distributed into 3 areas around the B core. This specific pattern has let us to propose that the structural basis for polyspecificity of MDR MFS transporters is the extended capacity brought by residues located at the periphery of a binding core to accomodate compounds differing in size and type.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antiporters/metabolismo , Candida albicans/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Antiporters/química , Antiporters/genética , Transporte Biológico , Candida albicans/química , Candida albicans/genética , Farmacorresistência Fúngica Múltipla , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Proteínas de Transporte de Cátions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Especificidade por Substrato
18.
Bioorg Med Chem ; 26(2): 421-434, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233614

RESUMO

Aiming at generating a library of bioactive indole alkaloid derivatives as multidrug resistance (MDR) reversers, two epimeric indole alkaloids (1 and 2) were submitted to chemical transformations, giving rise to twenty-four derivatives (5-28), bearing new aromatic or aliphatic azine moieties. The structure of the compounds was established by 1D and 2D NMR (COSY, HMBC, HMQC and NOESY) experiments. Two different strategies were employed for assessing their anti-MDR potential, namely through the evaluation of their activity as inhibitors of typical MDR ABC transporters overexpressed by cell transfection, such as ABCB1 (P-gp), ABCC1 (MRP1), and ABCG2 (BCRP), or by evaluating their ability as collateral sensitivity (CS) agents in cells overexpressing MRP1. A considerable MDR reversing activity was observed for compounds bearing the aromatic azine moiety. The strongest and most selective P-gp inhibition was found for the epimeric azines 5 and 6, bearing a para-methylbenzylidene moiety. Instead, compounds 17 and 18 that possess a di-substituted benzylidene portion with methoxy and hydroxyl groups, selectively inhibited MRP1 drug-efflux. None of these compounds inhibited BCRP. Compounds 5, 6 and 18 were further investigated in drug combination experiments, which corroborated their anti-MDR potential. Moreover, it was observed that compound 12, with an aromatic azine moiety, and compounds 23-26, sharing a new aliphatic substituent, displayed a CS activity, selectively killing MRP1-overexpressing cells. Among these last compounds, it could be established that addition of 19, 23 and 25 to MRP1-overexpressing cells led to glutathione depletion triggering cell death through apoptosis.


Assuntos
Alcaloides/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Hidrazinas/farmacologia , Indóis/farmacologia , Alcaloides/síntese química , Alcaloides/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Indóis/síntese química , Indóis/química , Camundongos , Estrutura Molecular , Células NIH 3T3 , Relação Estrutura-Atividade
19.
Sci Rep ; 7(1): 10209, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860487

RESUMO

Despite the emergence of targeted therapies and immunotherapy, chemotherapy remains the gold-standard for the treatment of most patients with solid malignancies. Spindle poisons that interfere with microtubule dynamics are commonly used in chemotherapy drug combinations. However, their troublesome side effects and the emergence of chemoresistance highlight the need for identifying alternative agents. We performed a high throughput cell-based screening and selected a pyrrolopyrimidine molecule (named PP-13). In the present study, we evaluated its anticancer properties in vitro and in vivo. We showed that PP-13 exerted cytotoxic effects on various cancer cells, including those resistant to current targeted therapies and chemotherapies. PP-13 induced a transient mitotic blockade by interfering with both mitotic spindle organization and microtubule dynamics and finally led to mitotic slippage, aneuploidy and direct apoptotic death. PP-13 was identified as a microtubule-targeting agent that binds directly to the colchicine site in ß-tubulin. Interestingly, PP-13 overcame the multidrug-resistant cancer cell phenotype and significantly reduced tumour growth and metastatic invasiveness without any noticeable toxicity for the chicken embryo in vivo. Overall, PP-13 appears to be a novel synthetic microtubule inhibitor with interesting anticancer properties and could be further investigated as a potent alternative for the management of malignancies including chemoresistant ones.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Pirimidinas/farmacologia , Pirróis/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Colchicina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirimidinas/química , Pirróis/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Zoo Wildl Med ; 48(2): 294-297, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28749295

RESUMO

From 2012 to 2015, 16 pregnancies were monitored by ultrasonography in nine tamanduas ( Tamandua tetradactyla ) housed in three zoological facilities. Sonographic measurements were recorded to establish fetal growth curves using thoracic and skull landmarks described for giant anteaters ( Myrmecophaga tridactyla ). All pregnancies resulted in the uncomplicated delivery of healthy offspring, thus gestational development was considered normal. These data may be used as a reference for normal fetal development with potential for estimating parturition date in the absence of breeding data.


Assuntos
Prenhez , Ultrassonografia/veterinária , Xenarthra/fisiologia , Animais , Feminino , Gravidez , Prenhez/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA