RESUMO
BACKGROUND: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors. METHODS: We tested a targeted library of ten epidrugs targeting regulators of enhancers and super-enhancers on reprogramming gene expression networks in seventeen patient-derived primary pancreatic cancer cell cultures (PDPCCs), of both basal and classical subtypes. We subsequently evaluated the ability of these epidrugs to sensitize pancreatic cancer cells to five chemotherapeutic drugs that are clinically used for this malignancy. FINDINGS: To comprehend the impact of epidrug priming at the molecular level, we evaluated the effect of each epidrugs at the transcriptomic level of PDPCCs. The activating epidrugs showed a higher number of upregulated genes than the repressive epidrugs (χ2 test p-value <0.01). Furthermore, we developed a classifier using the baseline transcriptome of epidrug-primed-chemosensitized PDPCCs to predict the best epidrug-priming regime to a given chemotherapy. Six signatures with a significant association with the chemosensitization centroid (R ≤ -0.80; p-value < 0.01) were identified and validated in a subset of PDPCCs. INTERPRETATION: We conclude that targeting enhancer-initiated pathways in patient-derived primary cells, represents a promising approach for developing new therapies for human pancreatic cancer. FUNDING: This work was supported by INCa (Grants number 2018-078 to ND and 2018- 079 to JI), Canceropole PACA (ND), Amidex Foundation (ND), and INSERM (JI).
Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Medicina de Precisão , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/patologia , Regulação Neoplásica da Expressão GênicaRESUMO
BACKGROUND: Bladder cancer (BCa) is more common in men and presents differences in molecular subtypes based on sex. Fibroblast growth factor receptor 3 (FGFR3) mutations are enriched in the luminal papillary muscle-invasive BCa (MIBC) and non-MIBC subtypes. OBJECTIVE: To determine whether FGFR3 mutations initiate BCa and impact BCa male sex bias. DESIGN, SETTING, AND PARTICIPANTS: We developed a transgenic mouse model expressing the most frequent FGFR3 mutation, FGFR3-S249C, in urothelial cells. Bladder tumorigenesis was monitored in transgenic mice, with and without carcinogen exposure. Mouse and human BCa transcriptomic data were compared. INTERVENTION: Mutant FGFR3 overexpression in mouse urothelium and siRNA knockdown in cell lines, and N-butyl-N(4-hydroxybutyl)-nitrosamine (BBN) exposure. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Impact of transgene dosage on tumor frequency, synergy with BBN treatment, and FGFR3 pathway activation were analyzed. The sex-specific incidence of FGFR3-mutated tumors was evaluated in mice and humans. FGFR3 expression in FGFR3-S249C mouse urothelium and in various human epithelia was measured. Mutant FGFR3 regulation of androgen (AR) and estrogen (ESR1) receptor activity was evaluated, through target gene expression (regulon) and reporter assays. RESULTS AND LIMITATIONS: FGFR3-S249C expression in mice induced low-grade papillary BCa resembling human luminal counterpart at histological, genomic, and transcriptomic levels, and promoted BBN-induced basal BCa formation. Mutant FGFR3 expression levels impacted tumor incidence in mice, and mutant FGFR3-driven human tumors were restricted to epithelia presenting high normal FGFR3 expression levels. BCa male sex bias, also found in our model, was even higher in human FGFR3-mutated tumors compared with wild-type tumors and was associated with higher AR and lower ESR1 regulon activity. Mutant FGFR3 expression inhibited both ESR1 and AR activity in mouse tumors and human cell lines, demonstrating causation only between FGFR3 activation and low ESR1 activity in tumors. CONCLUSIONS: Mutant FGFR3 initiates luminal papillary BCa formation and favors BCa male sex bias, potentially through FGFR3-dependent ESR1 downregulation. Patients with premalignant lesions or early-stage BCa could thus potentially benefit from FGFR3 targeting. FGFR3 expression level in epithelia could account for FGFR3-driven carcinoma tissue specificity. PATIENT SUMMARY: By developing a transgenic mouse model, we showed that gain-of-function mutations of FGFR3 receptor, among the most frequent genetic alterations in bladder cancer (BCa), initiate BCa formation. Our results could support noninvasive detection of FGFR3 mutations and FGFR3 targeting in early-stage bladder lesions.
Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Neoplasias da Bexiga Urinária , Feminino , Humanos , Masculino , Camundongos , Animais , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Bexiga Urinária/patologia , Sexismo , Neoplasias da Bexiga Urinária/patologia , Mutação , Camundongos Transgênicos , Androgênios/efeitos adversosRESUMO
Purpose: High circulating levels of the hormone prolactin (PRL) protect against experimental diabetic retinopathy (DR) due to the retinal accumulation of vasoinhibin, a PRL fragment that inhibits blood vessel permeability and growth. A phase 2 clinical trial is investigating a new therapy for DR based on elevating serum PRL levels with levosulpiride, a prokinetic dopamine D2 receptor blocker. Here, we tested whether levosulpiride-induced hyperprolactinemia elevates PRL and vasoinhibin in the vitreous of volunteer patients with proliferative DR (PDR) undergoing elective pars plana vitrectomy. Methods: Patients were randomized to receive placebo (lactose pill, orally TID; n = 19) or levosulpiride (25 mg orally TID; n = 18) for the 7 days before vitrectomy. Vitreous samples from untreated non-diabetic (n = 10) and PDR (n = 17) patients were also studied. Results: Levosulpiride elevated the systemic (101 ± 13 [SEM] vs. 9.2 ± 1.3 ng/mL, P < 0.0001) and vitreous (3.2 ± 0.4 vs. 1.5 ± 0.2 ng/mL, P < 0.0001) levels of PRL, and both levels were directly correlated (r = 0.58, P < 0.0002). The vitreous from non-diabetic patients or from PDR patients treated with levosulpiride, but not from placebo-treated PDR patients, inhibited the basic fibroblast growth factor (bFGF)- and vascular endothelial growth factor (VEGF)-induced proliferation of endothelial cells in culture. Vasoinhibin-neutralizing antibodies reduced the vitreous antiangiogenic effect. Matrix metalloproteases (MMPs) in the vitreous cleaved PRL to vasoinhibin, and their activity was higher in non-diabetic than in PDR patients. Conclusions: Levosulpiride increases the levels of PRL in the vitreous of PDR patients and promotes its MMP-mediated conversion to vasoinhibin, which can inhibit angiogenesis in DR. Translational Relevance: These findings support the potential therapeutic benefit of levosulpiride against vision loss in diabetes.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Retinopatia Diabética/tratamento farmacológico , Células Endoteliais , Humanos , Prolactina , Sulpirida/análogos & derivados , Fator A de Crescimento do Endotélio Vascular , Corpo VítreoRESUMO
BACKGROUND: Vasoinhibin is generated in the pituitary gland and in multiple target tissues by proteolytic cleavage of prolactin by matrix metalloproteinases and cathepsin D. A dysregulation of vasoinhibin generation appears to contribute to diabetic retinopathy and diabetic macular edema, retinopathy of prematurity, peripartum cardiomyopathy, and preeclampsia. Here, we investigate whether vasoinhibin is generated by matrix metalloproteinases and cathepsin D in human serum. METHODS: The abundance of matrix metalloproteinases 1, 2, 3, 8, 9, 10, 13, tissue inhibitors of metalloproteinases 1, 2, 4, and the activity of cathepsin D in serum samples were determined. Samples from healthy male (n = 3) and female (n = 2) subjects, pregnant subjects (n = 2), and patients with type 2 diabetes mellitus (n = 2) were investigated. The samples were incubated with recombinant prolactin at 37°C, under different pH, time, and buffer conditions. Prolactin and cleaved prolactin products were investigated by SDS-PAGE and western blotting. RESULTS: Matrix metalloproteases-1, -2, -3, -8, -9, -10, -13, TIMP-1, -2, and -4, and the activity of cathepsin D were detected in all sera. Full-length prolactin incubated with human sera, containing endogenous matrix metalloproteinases and cathepsin D, remained intact at neutral pH during a time frame from 1 to 24 hours. Partial enzymatic cleavage of prolactin resulting in the generation of a vasoinhibin-like 17 kDa peptide was observed in samples incubated at pH 3.4. Heat inactivation of the serum and the addition of an MMP inhibitor suppressed the generation of the 17 kDa peptide, indicating that its generation was MMP-mediated. CONCLUSIONS: Vasoinhibin generation by enzymatic cleavage of prolactin by matrix metalloproteases or cathepsin D does not occur in human serum at physiological pH. A limited proteolysis of prolactin, resulting in the generation of a vasoinhibin-like peptide with an apparent molecular weight of 17 kDa occurs in serum at acidic pH. The generation of vasoinhibin may require the cellular and tissue microenvironments.
Assuntos
Catepsina D/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metaloproteinases da Matriz/metabolismo , Prolactina/metabolismo , Adulto , Idoso de 80 Anos ou mais , Catepsina D/sangue , Proteínas de Ciclo Celular/sangue , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Metaloproteinases da Matriz/sangue , Pessoa de Meia-Idade , Prolactina/sangue , ProteóliseRESUMO
This study analyzes an oral supplement of molecular iodine (I2), alone and in combination with the neoadjuvant therapy 5-fluorouracil/epirubicin/cyclophosphamide or taxotere/epirubicin (FEC/TE) in women with Early (stage II) and Advanced (stage III) breast cancer. In the Early group, 30 women were treated with I2 (5 mg/day) or placebo (colored water) for 7-35 days before surgery. For the Advanced group, 30 patients received I2 or placebo, along with FEC/TE treatment. After surgery, all patients received FEC/TE + I2 for 170 days. I2 supplementation showed a significant attenuation of the side effects and an absence of tumor chemoresistance. The control, I2, FEC/TE, and FEC/TE + I2 groups exhibited response rates of 0, 33%, 73%, and 100%, respectively, and a pathologic complete response of 18%, and 36% in the last two groups. Five-year disease-free survival rate was significantly higher in patients treated with the I2 supplement before and after surgery compared to those receiving the supplement only after surgery (82% versus 46%). I2-treated tumors exhibit less invasive potential, and significant increases in apoptosis, estrogen receptor expression, and immune cell infiltration. Transcriptomic analysis indicated activation of the antitumoral immune response. The results led us to register a phase III clinical trial to analyze chemotherapy + I2 treatment for advanced breast cancer.
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Iodo/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Projetos Piloto , Oligoelementos/administração & dosagemRESUMO
FGFR3 is one of the most frequently mutated genes in bladder cancer and a driver of an oncogenic dependency. Here we report that only the most common recurrent FGFR3 mutation, S249C (TCCâTGC), represents an APOBEC-type motif and is probably caused by the APOBEC-mediated mutagenic process, accounting for its over-representation. We observed significant enrichment of the APOBEC mutational signature and overexpression of AID/APOBEC gene family members in bladder tumors with S249C compared to tumors with other recurrent FGFR3 mutations. Analysis of replication fork directionality suggests that the coding strand of FGFR3 is predominantly replicated as a lagging strand template that could favor the formation of hairpin structures, facilitating mutagenic activity of APOBEC enzymes. In vitro APOBEC deamination assays confirmed S249 as an APOBEC target. We also found that the FGFR3 S249C mutation was common in three other cancer types with an APOBEC mutational signature, but rare in urothelial tumors without APOBEC mutagenesis and in two diseases probably related to aging. PATIENT SUMMARY: We propose that APOBEC-mediated mutagenesis can generate clinically relevant driver mutations even within suboptimal motifs, such as in the case of FGFR3 S249C, one of the most common mutations in bladder cancer. Knowledge about the etiology of this mutation will improve our understanding of the molecular mechanisms of bladder cancer.
Assuntos
Desaminases APOBEC/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Neoplasias da Bexiga Urinária/genética , Aminoidrolases/genética , Citidina Desaminase/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mutagênese/genética , Mutação , Invasividade Neoplásica , Proteínas/genética , Análise de Sequência de RNA , Neoplasias da Bexiga Urinária/patologiaRESUMO
BACKGROUND: Muscle-invasive bladder cancer (MIBC) is an aggressive neoplasm with poor prognosis, lacking effective therapeutic targets. Oncogenic dependency on members of the TAM tyrosine kinase receptor family (TYRO3, AXL, MERTK) has been reported in several cancer types, but their role in bladder cancer has never been explored. METHODS: TAM receptor expression was evaluated in two series of human bladder tumours by gene expression (TCGA and CIT series), immunohistochemistry and western blotting analyses (CIT series). The role of the different TAM receptors was assessed by loss-of-function experiments and pharmaceutical inhibition in vitro and in vivo. RESULTS: We reported a significantly higher expression of TYRO3, but not AXL or MERTK, in both non-MIBCs and MIBCs, compared to normal urothelium. Loss-of-function experiments identified a TYRO3-dependency of bladder carcinoma-derived cells both in vitro and in a mouse xenograft model, whereas AXL and MERTK depletion had only a minor impact on cell viability. Accordingly, TYRO3-dependent bladder tumour cells were sensitive to pharmacological treatment with two pan-TAM inhibitors. Finally, growth inhibition upon TYRO3 depletion relies on cell cycle inhibition and apoptosis associated with induction of tumour-suppressive signals. CONCLUSIONS: Our results provide a preclinical proof of concept for TYRO3 as a potential therapeutic target in bladder cancer.
Assuntos
Carcinoma de Células de Transição/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias da Bexiga Urinária/genética , Animais , Apoptose/genética , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Humanos , Hylobatidae , Imunoquímica , Técnicas In Vitro , Camundongos , Terapia de Alvo Molecular , Músculo Liso/patologia , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Receptor Tirosina Quinase AxlRESUMO
FGFR3 alterations (mutations or translocation) are among the most frequent genetic events in bladder carcinoma. They lead to an aberrant activation of FGFR3 signaling, conferring an oncogenic dependence, which we studied here. We discovered a positive feedback loop, in which the activation of p38 and AKT downstream from the altered FGFR3 upregulates MYC mRNA levels and stabilizes MYC protein, respectively, leading to the accumulation of MYC, which directly upregulates FGFR3 expression by binding to active enhancers upstream from FGFR3 Disruption of this FGFR3/MYC loop in bladder cancer cell lines by treatment with FGFR3, p38, AKT, or BET bromodomain inhibitors (JQ1) preventing MYC transcription decreased cell viability in vitro and tumor growth in vivo A relevance of this loop to human bladder tumors was supported by the positive correlation between FGFR3 and MYC levels in tumors bearing FGFR3 mutations, and the decrease in FGFR3 and MYC levels following anti-FGFR treatment in a PDX model bearing an FGFR3 mutation. These findings open up new possibilities for the treatment of bladder tumors displaying aberrant FGFR3 activation.
Assuntos
Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Azepinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Triazóis/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. METHODS: Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. RESULTS: Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. CONCLUSIONS: Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.