Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 52(10): 5912-5927, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38742632

RESUMO

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Mutação , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/química , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína
2.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058548

RESUMO

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

3.
Mitochondrion ; 71: 93-103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343711

RESUMO

The 22 members of the NUDIX (NUcleoside DIphosphate linked to another moiety, X) hydrolase superfamily can hydrolyze a variety of phosphorylated molecules including (d)NTPs and their oxidized forms, nucleotide sugars, capped mRNAs and dinucleotide coenzymes such as NADH and FADH. Beside this broad range of enzymatic substrates, the NUDIX proteins can also be found in different cellular compartments, mainly in the nucleus and in the cytosol, but also in the peroxisome and in the mitochondria. Here we studied two members of the family, NUDT6 and NUDT9. We showed that NUDT6 is expressed in human cells and localizes exclusively to mitochondria and we confirmed that NUDT9 has a mitochondrial localization. To elucidate their potential role within this organelle, we investigated the functional consequences at the mitochondrial level of NUDT6- and NUDT9-deficiency and found that the depletion of either of the two proteins results in an increased activity of the respiratory chain and an alteration of the mitochondrial respiratory chain complexes expression. We demonstrated that NUDT6 and NUDT9 have distinct substrate specificity in vitro, which is dependent on the cofactor used. They can both hydrolyze a large range of low molecular weight compounds such as NAD+(H), FAD and ADPR, but NUDT6 is mainly active towards NADH, while NUDT9 displays a higher activity towards ADPR.


Assuntos
NAD , Pirofosfatases , Humanos , Hidrólise , Mitocôndrias/metabolismo , Pirofosfatases/genética , Pirofosfatases/química , Pirofosfatases/metabolismo
4.
Mol Syst Biol ; 19(7): e11267, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259925

RESUMO

While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.


Assuntos
Ácido Aspártico , Peroxirredoxinas , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Dano ao DNA , Estresse Oxidativo/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
5.
Front Oncol ; 12: 874201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719993

RESUMO

Cisplatin induces DNA crosslinks that are highly cytotoxic. Hence, platinum complexes are frequently used in the treatment of a broad range of cancers. Efficiency of cisplatin treatment is limited by the tumor-specific DNA damage response to the generated lesions. We reasoned that better tools to investigate the repair of DNA crosslinks induced by cisplatin would therefore be highly useful in addressing drug limitations. Here, we synthesized a series of cisplatin derivatives that are compatible with click chemistry, thus allowing visualization and isolation of DNA-platinum crosslinks from cells to study cellular responses. We prioritized one alkyne and one azide Pt(II) derivative, Pt-alkyne-53 and Pt-azide-64, for further biological characterization. We demonstrate that both compounds bind DNA and generate DNA lesions and that the viability of treated cells depends on the active DNA repair machinery. We also show that the compounds are clickable with both a fluorescent probe as well as biotin, thus they can be visualized in cells, and their ability to induce crosslinks in genomic DNA can be quantified. Finally, we show that Pt-alkyne-53 can be used to identify DNA repair proteins that bind within its proximity to facilitate its removal from DNA. The compounds we report here can be used as valuable experimental tools to investigate the DNA damage response to platinum complexes and hence might shed light on mechanisms of chemoresistance.

6.
Cancers (Basel) ; 12(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722390

RESUMO

Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.

7.
Sci Rep ; 8(1): 5368, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599527

RESUMO

EXD2 is a recently identified exonuclease that has been implicated in nuclear double-strand break repair. Given our long standing interest in mitochondrial DNA maintenance and indications that EXD2 could also be a mitochondrial protein we sought to determine its cellular localization and possible mitochondrial associated functions. Our results show that EXD2 indeed shows mitochondrial localization, but, surprisingly, is found predominantly associated with the mitochondrial outer-membrane. Gradient purified nuclei show only the faintest hint of EXD2 presence while overexpression of the predicted full-length protein shows exclusive mitochondrial localization. Importantly, induction of double-strand DNA breaks via X-irradiation or Zeocin treatment does not support the notion that EXD2 re-locates to the nucleus following double-strand breaks and thus is unlikely to have a direct role in nuclear DNA repair. Knockdown or overexpression of EXD2 affects the cellular distribution of mitochondria. These results suggest that the reported defects in nuclear DNA repair following EXD2 depletion are likely an indirect consequence of altered mitochondrial dynamics and/or function.


Assuntos
Reparo do DNA , Exonucleases/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Exonucleases/antagonistas & inibidores , Exonucleases/genética , Humanos , Microscopia de Fluorescência , Mitocôndrias/patologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo
8.
PLoS One ; 12(4): e0176795, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28453550

RESUMO

Mitochondrial DNA (mtDNA) can undergo double-strand breaks (DSBs), caused by defective replication, or by various endogenous or exogenous sources, such as reactive oxygen species, chemotherapeutic agents or ionizing radiations. MtDNA encodes for proteins involved in ATP production, and maintenance of genome integrity following DSBs is thus of crucial importance. However, the mechanisms involved in mtDNA maintenance after DSBs remain unknown. In this study, we investigated the consequences of the production of mtDNA DSBs using a human inducible cell system expressing the restriction enzyme PstI targeted to mitochondria. Using this system, we could not find any support for DSB repair of mtDNA. Instead we observed a loss of the damaged mtDNA molecules and a severe decrease in mtDNA content. We demonstrate that none of the known mitochondrial nucleases are involved in the mtDNA degradation and that the DNA loss is not due to autophagy, mitophagy or apoptosis. Our study suggests that a still uncharacterized pathway for the targeted degradation of damaged mtDNA in a mitophagy/autophagy-independent manner is present in mitochondria, and might provide the main mechanism used by the cells to deal with DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Mitocondrial , Southern Blotting , Western Blotting , Ciclo-Oxigenase 1/genética , Reparo do DNA , Endonucleases/metabolismo , Exonucleases/metabolismo , Citometria de Fluxo , Células HEK293 , Humanos , Cinética , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência , Transfecção
9.
DNA Repair (Amst) ; 48: 8-16, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27793508

RESUMO

BACKGROUND: Poly-ADP ribosylation (PARylation) is a post translational modification, catalyzed by Poly(ADP-ribose)polymerase (PARP) family. In Drosophila, PARP-I (human PARP-1 ortholog) is considered to be the only enzymatically active isoform. PARylation is involved in various cellular processes such as DNA repair in case of base excision and strand-breaks. OBSERVATIONS: Strand-breaks (SSB and DSB) are detrimental to cell viability and, in Drosophila, that has a unique PARP family organization, little is known on PARP involvement in the control of strand-breaks repair process. In our study, strands-breaks (SSB and DSB) are chemically induced in S2 Drosophila cells using bleomycin. These breaks are efficiently repaired in S2 cells. During the bleomycin treatment, changes in PARylation levels are only detectable in a few cells, and an increase in PARP-I and PARP-II mRNAs is only observed during the recovery period. These results differ strongly from those obtained with Human cells, where PARylation is strongly activating when DNA breaks are generated. Finally, in PARP knock-down cells, DNA stability is altered but no change in strand-breaks repair can be observed. CONCLUSIONS: PARP responses in DNA strands-breaks context are functional in Drosophila model as demonstrated by PARP-I and PARP-II mRNA increases. However, no modification of the global PARylation profile is observed during strand-breaks generation, only changes at cellular levels are detectable. Taking together, these results demonstrate that PARylation process in Drosophila is tightly regulated in the context of strands-breaks repair and that PARP is essential during the maintenance of DNA integrity but dispensable in the DNA repair process.


Assuntos
Reparo do DNA , Proteínas de Drosophila/metabolismo , Macrófagos/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Animais , Bleomicina/farmacologia , Linhagem Celular , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA