Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580202

RESUMO

Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3 An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D3 has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D3 [25(OH)D3] levels, as the most accurate measure of vitamin D3 status, were assessed before, during, and after the exposures. These were then used to generate linear dose-response curves that were different for each UVR spectrum. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D3 action spectrum require revision.


Assuntos
Eritema/etiologia , Pele/efeitos da radiação , Raios Ultravioleta , Vitamina D/biossíntese , Adulto , Calcifediol/sangue , Relação Dose-Resposta à Radiação , Humanos , Pele/metabolismo , Adulto Jovem
2.
J Invest Dermatol ; 140(7): 1418-1426.e1, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31883961

RESUMO

Epidemiology suggests that melanin inhibits cutaneous vitamin D3 synthesis by UVR. Laboratory investigations assessing the impact of melanin on vitamin D production have produced contradictory results. We determined the effect of melanin on vitamin D3 photosynthesis in healthy young volunteers (n = 102) of Fitzpatrick skin types II-VI (white to black). Participants, irrespective of skin type, were exposed to the same suberythemal UVR dose, to 85% body surface area, using solar simulated UVR or narrowband UVB (311 nm). This was repeated five times with intervals of 3-4 days between UVR exposures. Blood was taken before, during, and after the irradiation and assessed for serum 25-hydroxyvitamin D3 (25[OH]D3) as a marker of vitamin D3 status. Linear UVR dose-dependent increases in 25(OH)D3 were highly significant (P ≤ 7.7 x 10-11). The ratios of regression slopes of the different skin type groups were compared, and only skin type II was significantly steeper than the other groups. Comparisons between extreme skin types II and VI showed melanin inhibition factors of approximately 1.3-1.4, depending on the UVR source. We conclude that the inhibitory effect of melanin on vitamin D3 synthesis is small, compared with erythema, but that this difference may be sufficient to explain the epidemiological data.


Assuntos
Calcifediol/biossíntese , Melaninas/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Deficiência de Vitamina D/metabolismo , Adulto , Dieta , Feminino , Voluntários Saudáveis , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Regressão , Espectrofotometria Ultravioleta , Vitamina D/sangue , Adulto Jovem
3.
Photochem Photobiol Sci ; 16(3): 399-410, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28092390

RESUMO

The incidence of asthma has increased markedly since the 1960s and is currently estimated to affect more than 300 million individuals worldwide. A number of environmental factors are implicated in asthma pathogenesis, one of which is vitamin D. Vitamin D deficiency is a global health concern and has increased in parallel with asthma incidence. Epidemiological studies report associations between low vitamin D status, assessed as circulating levels of 25-hydroxyvitamin D, with asthma incidence, severity, exacerbations and responses to treatment. This has led to clinical studies to test whether increasing the levels of vitamin D improves asthma management. Despite being highly variable in dosing regimens, design and outcomes, meta-analyses suggest overall positive outcomes with respect to reduced asthma exacerbations and steroid requirements. The primary mechanism for increasing vitamin D levels in the body is through exposure of the skin to the ultraviolet B (UVB) component of ultraviolet radiation (UVR), most commonly from sun exposure. However, only a limited number of studies investigating the impact of UVR on the asthmatic response have been performed; these generally report on the impact of latitude as a surrogate of sun exposure, or address this in animal models. To the best of our knowledge no comprehensive trials to assess the impact of UVB radiation on asthma outcomes have been performed. Within this review we discuss observational and clinical studies in this field, and innate and adaptive immune mechanisms through which UVR and vitamin D may impact respiratory health, and asthma. We highlight the heterogeneity of asthmatic disease, which is likely to impact upon the efficacy of interventional studies, and briefly overview more recent findings relating to the impact of vitamin D/UVR on the development of asthma.


Assuntos
Asma/tratamento farmacológico , Asma/imunologia , Raios Ultravioleta , Terapia Ultravioleta , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/imunologia , Vitamina D/uso terapêutico , Humanos , Vitamina D/administração & dosagem
4.
J Cell Sci ; 126(Pt 23): 5377-90, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24046455

RESUMO

The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.


Assuntos
Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Ativação Transcricional , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Linhagem Celular Transformada , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Colina Quinase/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Tipo 1 de Angiotensina/genética , Transdução de Sinais , Trombina/metabolismo , Trombina/farmacologia
5.
Genome Res ; 20(3): 351-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20110566

RESUMO

ATRX (alpha thalassemia/mental retardation syndrome X-linked) belongs to the SWI2/SNF2 family of chromatin remodeling proteins. Besides the ATPase/helicase domain at its C terminus, it contains a PHD-like zinc finger at the N terminus. Mutations in the ATRX gene are associated with X-linked mental retardation (XLMR) often accompanied by alpha thalassemia (ATRX syndrome). Although ATRX has been postulated to be a transcriptional regulator, its precise roles remain undefined. We demonstrate ATRX localization at the telomeres in interphase mouse embryonic stem (ES) cells in synchrony with the incorporation of H3.3 during telomere replication at S phase. Moreover, we found that chromobox homolog 5 (CBX5) (also known as heterochromatin protein 1 alpha, or HP1 alpha) is also present at the telomeres in ES cells. We show by coimmunoprecipitation that this localization is dependent on the association of ATRX with histone H3.3, and that mutating the K4 residue of H3.3 significantly diminishes ATRX and H3.3 interaction. RNAi-knockdown of ATRX induces a telomere-dysfunction phenotype and significantly reduces CBX5 enrichment at the telomeres. These findings suggest a novel function of ATRX, working in conjunction with H3.3 and CBX5, as a key regulator of ES-cell telomere chromatin.


Assuntos
DNA Helicases/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Células-Tronco Pluripotentes/metabolismo , Telômero/metabolismo , Adenosina Trifosfatases/química , Animais , Cromatina/metabolismo , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , DNA Helicases/genética , Replicação do DNA/genética , Replicação do DNA/fisiologia , Células-Tronco Embrionárias/metabolismo , Genes , Histonas/genética , Humanos , Deficiência Intelectual/genética , Interfase/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Mutação , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X , Talassemia alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA