Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 179(1): 196-208, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18433432

RESUMO

The avirulence gene ACE1 from the rice blast fungus Magnaporthe grisea encodes a polyketide synthase (PKS) fused to a nonribosomal peptide synthetase (NRPS) probably involved in the biosynthesis of a secondary metabolite recognized by Pi33 resistant rice (Oryza sativa) cultivars. Analysis of the M. grisea genome revealed that ACE1 is located in a cluster of 15 genes, of which 14 are potentially involved in secondary metabolism as they encode enzymes such as a second PKS-NRPS (SYN2), two enoyl reductases (RAP1 and RAP2) and a putative Zn(II)(2)Cys(6) transcription factor (BC2). These 15 genes are specifically expressed during penetration into the host plant, defining an infection-specific gene cluster. A pORF3-GFP transcriptional fusion showed that the highly expressed ORF3 gene from the ACE1 cluster is only expressed in appressoria, as is ACE1. Phenotypic analysis of deletion or disruption mutants of SYN2 and RAP2 showed that they are not required for avirulence in Pi33 rice cultivars, unlike ACE1. Inactivation of other genes was unsuccessful because targeted gene replacement and disruption were inefficient at this locus. Overall, the ACE1 gene cluster displays an infection-specific expression pattern restricted to the penetration stage which is probably controlled at the transcriptional level and reflects regulatory networks specific to early stages of infection.


Assuntos
Proteínas Fúngicas/genética , Magnaporthe/genética , Família Multigênica , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Fatores de Virulência/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Fluorescência Verde/análise , Hordeum/microbiologia , Magnaporthe/enzimologia , Magnaporthe/patogenicidade , Oryza/microbiologia , Peptídeo Sintases/metabolismo , Peptídeo Sintases/fisiologia , Fenótipo , Policetídeo Sintases/metabolismo , Policetídeo Sintases/fisiologia , Proteínas Recombinantes de Fusão/análise , Análise de Sequência de DNA , Fatores de Virulência/metabolismo , Fatores de Virulência/fisiologia
2.
Fungal Genet Biol ; 45(1): 68-75, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17716934

RESUMO

The ascomycete Magnaporthe grisea is a model species for the study of plant fungal interactions. As in many filamentous fungi, targeted gene replacement occurs at low frequency in M. grisea (average 7%). mus52/KU80 is a gene essential for non-homologous end joining (NHEJ) of DNA double-strand breaks. Its deletion increases the frequency of targeted gene replacement in fungi [Ninomiya, Y., Suzuki, K., Ishii, C., Inoue, H., 2004. Highly efficient gene replacements in Neurospora strains deficient for non-homologous end joining. Proc. Natl. Acad. Sci. USA 101(33), 12248-53]. M. grisea KU80 deletion mutants were constructed and displayed wild-type phenotypes regarding pathogenicity, growth, sporulation and mating. MgADE4 targeted gene replacement frequency was increased in Deltaku80 mutants (80% vs 5%) and high frequencies (>80%) were observed at seven other loci. However, the deletion of MgKU80 did not increase the frequency of ACE1 replacement indicating that this locus has an intrinsic reduced ability for gene replacement. These results open the way to large-scale reverse genetics experiments in M. grisea facilitating the study of the infection process.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Marcação de Genes/métodos , Genes Fúngicos , Magnaporthe/genética , Inativação Gênica , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Recombinação Genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA