Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
2.
Sci Total Environ ; 715: 136824, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007879

RESUMO

Even though production and open use of polychlorinated biphenyls (PCBs) have been phased out in Western industrialised countries since the 1980s, PCBs were still present in waste collected from different waste handling facilities in Norway in 2013. Sums of seven indicator-PCBs (I-PCB7: PCB-28, -52, -101, -118, -138, -153 and -180) were highest in plastic waste (3700 ±1800 µg/kg, n=15), waste electrical and electronic equipment (WEEE) (1300 ± 400 µg/kg, n=12) and fine vehicle fluff (1800 ± 1400 µg/kg, n=4) and lowest in glass waste, combustibles, bottom ash and fly ash (0.3 to 65 µg/kg). Concentrations in leachate water varied from 1.7 to 2900 ng/L, with higher concentrations found at vehicle and WEEE handling facilities. Particles in leachate water exhibited similar PCB sorption properties as solid waste collected on site, with waste-water partitioning coefficients ranging from 105 to 107. I-PCB7 in air samples collected at the sites were mostly in the gas phase (100-24000 pg/m3), compared to those associated with particles (9-1900 pg/m3). In contrast, brominated flame retardants (BFRs) in the same samples were predominantly found associated with particles (e.g. sum of 10 brominated diethyl ethers, ΣBDE10, associated with particles 77-194,000 pg/m3) compared to the gas phase (ΣBDE10 6-473 pg/m3). Measured gas-phase I-PCB7 concentrations are less than predicted, assuming waste-air partitioning in equilibrium with predominant waste on site. However, the gas-particle partitioning behavior of PCBs and BFRs could be predicted using an established partitioning model for ambient aerosols. PCB emissions from Norwegian waste handling facilities occurred primarily in the form of atmospheric vapor or leachate particles.

3.
Sci Total Environ ; 615: 197-207, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968581

RESUMO

The "pharmaceutical" polar organic integrative sampler (POCIS) is a passive sampler composed of an outer polyethersulfone (PES) membrane and an inner receiving Hydrophilic-Lipophilic Balance (HLB) phase. Target micropollutants can accumulate in the POCIS HLB phase following different uptake patterns. Two of the most common ones are a first-order kinetic uptake (Chemical Reaction Kinetic 1, CRK1 model), and a first-order kinetic uptake with an inflexion point (CRK2 model). From a previous study, we identified 30 and 13 micropollutants following CRK1 and CRK2 accumulation model in the POCIS HLB phase, respectively. We hypothesized that uptake in the outer PES membrane of POCIS may influence the uptake pathway. Thus, novel measurements of uptake in PES membrane were performed for these micropollutants to characterise kinetic accumulation in the membrane with and without the HLB phase. We determined, for the first time, the membrane-water distribution coefficient for 31 micropolluants. Moreover, the lag times for molecules to breakthrough the POCIS membrane increased with increasing hydrophobicity, defined by the octanol-water dissociation constant Dow. However, Dow alone was insufficient to predict whether uptake followed a CRK1 or CRK2 model in the POCIS HLB phase. Thus, we performed a factorial discriminant analysis considering several molecular physico-chemical properties, and the model of accumulation for the studied micropollutants can be predicted with >90% confidence. The most influent properties to predict the accumulation model were the log Dow and the polar surface area of the molecule (>70% confidence with just these two properties). Molecules exhibiting a CRK1 uptake model for the POCIS HLB phase tended to have log Dow>2.5 and polar surface area <50Ǻ2.

4.
Chemosphere ; 184: 1362-1371, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28693101

RESUMO

Polar organic chemical integrative samplers (POCIS) have previously been used to monitor alkylphenol (AP) contamination in water and produced water. However, only the sorbent receiving phase of the POCIS (Oasis beads) is traditionally analyzed, thus limiting the use of POCIS for monitoring a range of APs with varying hydrophobicity. Here a "pharmaceutical" POCIS was calibrated in the laboratory using a static renewal setup for APs (from 2-ethylphenol to 4-n-nonylphenol) with varying hydrophobicity (log Kow between 2.47 and 5.76). The POCIS sampler was calibrated over its 28 day integrative regime and sampling rates (Rs) were determined. Uptake was shown to be a function of AP hydrophobicity where compounds with log Kow < 4 were preferentially accumulated in Oasis beads, and compounds with log Kow > 5 were preferentially accumulated in the PES membranes. A lag phase (over a 24 h period) before uptake in to the PES membranes occurred was evident. This work demonstrates that the analysis of both POCIS phases is vital in order to correctly determine environmentally relevant concentrations owing to the fact that for APs with log Kow ≤ 4 uptake, to the PES membranes and the Oasis beads, involves different processes compared to APs with log Kow ≥ 4. The extraction of both the POCIS matrices is thus recommended in order to assess the concentration of hydrophobic APs (log Kow ≥ 4), as well as hydrophilic APs, most effectively.


Assuntos
Monitoramento Ambiental/instrumentação , Fenóis/análise , Poluentes Químicos da Água/análise , Calibragem , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/química , Água/química
5.
Waste Manag ; 60: 775-785, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28094158

RESUMO

Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy.


Assuntos
Compostos Benzidrílicos , Poluentes Ambientais/análise , Fenóis , Eliminação de Resíduos/métodos , Compostos Benzidrílicos/análise , Poeira , Resíduo Eletrônico/análise , Exposição Ambiental/análise , Incineração , Noruega , Fenóis/análise , Plásticos , Reciclagem , Instalações de Eliminação de Resíduos
6.
J Environ Sci (China) ; 62: 115-132, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289283

RESUMO

Flame retardants in commercial products eventually make their way into the waste stream. Herein the presence of flame retardants in Norwegian landfills, incineration facilities and recycling sorting/defragmenting facilities is investigated. These facilities handled waste electrical and electronic equipment (WEEE), vehicles, digestate, glass, combustibles, bottom ash and fly ash. The flame retardants considered included polybrominated diphenyl ethers (∑BDE-10) as well as dechlorane plus, polybrominated biphenyls, hexabromobenzene, pentabromotoluene and pentabromoethylbenzene (collectively referred to as ∑FR-7). Plastic, WEEE and vehicles contained the largest amount of flame retardants (∑BDE-10: 45,000-210,000µg/kg; ∑FR-7: 300-13,000µg/kg). It was hypothesized leachate and air concentrations from facilities that sort/defragment WEEE and vehicles would be the highest. This was supported for total air phase concentrations (∑BDE-10: 9000-195,000pg/m3 WEEE/vehicle facilities, 80-900pg/m3 in incineration/sorting and landfill sites), but not for water leachate concentrations (e.g., ∑BDE-10: 15-3500ng/L in WEEE/Vehicle facilities and 1-250ng/L in landfill sites). Landfill leachate exhibited similar concentrations as WEEE/vehicle sorting and defragmenting facility leachate. To better account for concentrations in leachates at the different facilities, waste-water partitioning coefficients, Kwaste were measured (for the first time to our knowledge for flame retardants). WEEE and plastic waste had elevated Kwaste compared to other wastes, likely because flame retardants are directly added to these materials. The results of this study have implications for the development of strategies to reduce exposure and environmental emissions of flame retardants in waste and recycled products through improved waste management practices.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Bromobenzenos/análise , Resíduo Eletrônico/análise , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Noruega , Plásticos , Bifenil Polibromatos/análise , Compostos Policíclicos/análise , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA