Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; 7(2): e0129021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311560

RESUMO

The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.


Assuntos
Lactuca , Xanthomonas , Lactuca/genética , Xanthomonas/genética , Genômica , Carboidratos
2.
Mol Plant Pathol ; 23(5): 597-621, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35068051

RESUMO

TAXONOMY: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. hortorum; Pathovars: pv. carotae, pv. vitians, pv. hederae, pv. pelargonii, pv. taraxaci, pv. cynarae, and pv. gardneri. HOST RANGE: Xanthomonas hortorum affects agricultural crops, and horticultural and wild plants. Tomato, carrot, artichoke, lettuce, pelargonium, ivy, and dandelion were originally described as the main natural hosts of the seven separate pathovars. Artificial inoculation experiments also revealed other hosts. The natural and experimental host ranges are expected to be broader than initially assumed. Additionally, several strains, yet to be assigned to a pathovar within X. hortorum, cause diseases on several other plant species such as peony, sweet wormwood, lavender, and oak-leaf hydrangea. EPIDEMIOLOGY AND CONTROL: X. hortorum pathovars are mainly disseminated by infected seeds (e.g., X. hortorum pvs carotae and vitians) or cuttings (e.g., X. hortorum pv. pelargonii) and can be further dispersed by wind and rain, or mechanically transferred during planting and cultivation. Global trade of plants, seeds, and other propagating material constitutes a major pathway for their introduction and spread into new geographical areas. The propagules of some pathovars (e.g., X. horturum pv. pelargonii) are spread by insect vectors, while those of others can survive in crop residues and soils, and overwinter until the following growing season (e.g., X. hortorum pvs vitians and carotae). Control measures against X. hortorum pathovars are varied and include exclusion strategies (i.e., by using certification programmes and quarantine regulations) to multiple agricultural practices such as the application of phytosanitary products. Copper-based compounds against X. hortorum are used, but the emergence of copper-tolerant strains represents a major threat for their effective management. With the current lack of efficient chemical or biological disease management strategies, host resistance appears promising, but is not without challenges. The intrastrain genetic variability within the same pathovar poses a challenge for breeding cultivars with durable resistance. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTGA, https://gd.eppo.int/taxon/XANTCR, https://gd.eppo.int/taxon/XANTPE, https://www.euroxanth.eu, http://www.xanthomonas.org, http://www.xanthomonas.org/dokuwiki.


Assuntos
Jardins , Xanthomonas , Cobre , Genômica , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Virulência/genética
3.
Syst Appl Microbiol ; 43(4): 126087, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32690196

RESUMO

Assessment of the taxonomy and diversity of Xanthomonas strains causing bacterial leaf spot of lettuce (BLSL), commonly referred to as Xanthomonas campestris pv. vitians, has been a long-lasting issue which held back the global efforts made to understand this pathogen. In order to provide a sound basis essential to its study, we conducted a polyphasic approach on strains obtained through sampling campaigns or acquired from collections. Results of a multilocus sequence analysis crossed with phenotypic assays revealed that the pathotype strain does not match the description of the nomenspecies provided by Brown in 1918. However, strain LMG 938=CFBP 8686 does fit this description. Therefore, we propose that it replaces LMG 937=CFBP 2538 as pathotype strain of X. campestris pv. vitians. Then, whole-genome based phylogenies and overall genome relatedness indices calculated on taxonomically relevant strains exhibited the intermediate position of X. campestris pv. vitians between closely related species Xanthomonas hortorum and Xanthomonas cynarae. Phenotypic profiles characterized using Biolog microplates did not reveal stable diagnostic traits legitimizing their distinction. Therefore, we propose that X. cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of X. hortorum, to reclassify X. campestris pv. vitians as X. hortorum pv. vitians comb. nov. and to transfer X. cynarae pathovars in X. hortorum as X. hortorum pv. cynarae comb. nov. and X. hortorum pv. gardneri comb. nov. An emended description of X. hortorum is provided, making this extended species a promising model for the study of Xanthomonas quick adaptation to different hosts.


Assuntos
Lactuca/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/classificação , DNA Bacteriano/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Análise de Sequência de DNA , Terminologia como Assunto , Xanthomonas/genética , Xanthomonas/isolamento & purificação , Xanthomonas/patogenicidade
4.
Microb Genom ; 7(6)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33760724

RESUMO

The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA