Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 14(45): 12995-13006, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023518

RESUMO

Although the finding of superelasticity and ferroelasticity in organic crystals has been serendipitous, an increasing number of organic crystals with such deformation properties have been witnessed. Understanding the structure-property relationship can aid in the rational selection of intermolecular interactions to design organic crystals with desired superelastic or ferroelastic properties. In this study, we investigated the mechanical deformation in two cocrystals, prepared with the parent compound, 1,4-diiodotetrafluorobenzene with two coformers, 1,2-bis(4-pyridyl)ethane and pyrene. The parent compound and coformers were chosen to introduce distinct weak interactions such as halogen bonds and C-H⋯F, and π⋯π interactions in the crystal structure. The two cocrystals exhibited different mechanical deformations, superelasticity, and ferroelasticity, respectively. The single-crystal X-ray diffraction and energy framework analysis of the crystal structure of the cocrystals revealed that both deformations were caused by mechanical twinning. Interestingly, a difference in the extent of deformation was observed, modulated by a combination of strong and weak intermolecular interactions in the superelastic cocrystal, and only weak interaction in the ferroelastic one. In this comparison, the superelastic cocrystal exhibited higher thermal diffusivity than the ferroelastic cocrystal, indicating the presence of symmetrical and relatively robust intermolecular interactions in the superelastic cocrystal.

2.
J Am Chem Soc ; 145(42): 23027-23036, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824218

RESUMO

A two-directional ferroelastic deformation in organic crystals is unprecedented owing to its anisotropic crystal packing, in contrast to isotropic symmetrical packing in inorganic compounds and polymers. Thereby, finding and constructing multidirectional ferroelastic deformations in organic compounds is undoubtedly complex and at once calls for deep comprehension. Herein, we demonstrate the first example of a two-directional ferroelastic deformation with a unique scissor-like movement in single crystals of trans-3-hexenedioic acid by the application of uniaxial compression stress. A detailed structural investigation of the mechanical deformation at the macroscopic and microscopic levels by three distinct force measurement techniques (including shear and three-point bending test), single crystal X-ray diffraction techniques, and polarized synchrotron-FTIR microspectroscopy highlighted that mechanical twinning promoted the deformation. The presence of two crystallographically equivalent faces and the herringbone arrangement promoted the two-directional ferroelastic deformation. In addition, anisotropic heat transfer properties in the parent and the deformed domains were investigated by thermal diffusivity measurement on all three axes using microscale temperature-wave analysis (µ-TWA). A correlation between the anisotropic structural arrangement and the difference in thermal diffusivity and mechanical behavior in the two-directional organoferroelastic deformation could be established. The structural and molecular level information from this two-directional ferroelastic deformation would lead to a more profound understanding of the structure-property relationship in multidirectional deformation in organic crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA