Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(2): 245-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485763

RESUMO

We previously clarified the histological characteristics of macrophages in the rat small intestine using serial block-face scanning electron microscopy (SBF-SEM). However, the regional differences in the characteristics of macrophages throughout the large intestine remain unknown. Here, we performed a pilot study to explore the regional differences in the ultrastructure of mucosal macrophages in the large intestine by using SBF-SEM analysis. SBF-SEM analysis conducted on the luminal side of the cecum and descending colon revealed macrophages as amorphous cells possessing abundant lysosomes and vacuoles. Macrophages in the cecum exhibited a higher abundance of lysosomes and a lower abundance of vacuoles than those in the descending colon. Macrophages with many intraepithelial cellular processes were observed beneath the intestinal superficial epithelium in the descending colon. Moreover, macrophages in contact with nerve fibers were more prevalent in the cecum than in the descending colon, and a subset of them surrounded a nerve bundle only in the cecum. In conclusion, the present pilot study suggested that the quantity of some organelles (lysosomes and vacuoles) in macrophages differed between the cecum and the descending colon and that there were some region-specific subsets of macrophages like nerve-associated macrophages in the cecum.


Assuntos
Mucosa Intestinal , Macrófagos , Animais , Macrófagos/ultraestrutura , Masculino , Mucosa Intestinal/ultraestrutura , Ratos , Ratos Wistar , Intestino Grosso/ultraestrutura , Intestino Grosso/inervação , Microscopia Eletrônica de Varredura , Lisossomos/ultraestrutura , Lisossomos/metabolismo , Ceco/ultraestrutura , Vacúolos/ultraestrutura
2.
J Vet Med Sci ; 85(10): 1034-1039, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37612064

RESUMO

The present study aimed to histologically clarify the regional specificity of the mucosal enteric glial cells (mEGCs) in the rat intestine with serial block-face scanning electron microscopy (SBF-SEM). SBF-SEM analysis with the ileum, the cecum and the descending colon revealed that mEGC nuclei were more abundant in the data stacks from the apical portion of the villus and the lateral portion of the crypt of the ileum. mEGCs exhibited a high rate of coverage over the nerve bundle around the lateral portion of the ileal crypt, but showed an extremely low level of coverage in the luminal portion of the cecum. These findings evidenced regional differences in the localization of mEGCs and in their sheath structure in the rat intestine.


Assuntos
Íleo , Intestino Delgado , Ratos , Animais , Mucosa Intestinal , Neuroglia , Ceco
3.
J Vet Med Sci ; 85(2): 123-134, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517005

RESUMO

Our previous studies and others have revealed detailed characteristics of the mucosal nerve network in the small intestine, but much remains unknown about the corresponding network in the large intestine. We herein investigated regional differences in the expression of neurochemical markers, the nerve network structure, and the cells in contact with nerve fibers by histological analysis using both immunohistochemistry and serial block-face scanning electron microscopy (SBF-SEM). Immunohistochemistry revealed that immunopositive structures for protein gene product 9.5, vasoactive intestinal peptide (VIP), calretinin and vesicular acetylcholine transporter were more prevalent in the lamina propria of the ascending colon than the cecum and descending colon (DC). There was no significant difference in the frequency of most neurochemical markers between the cecum and DC, but the frequencies of VIP+ structures were higher in the cecum than in the DC. SBF-SEM analysis showed that the nerve network structure was more developed on the luminal side of the DC than the cecum. The cells that nerve fibers abundantly contacted were subepithelial and lamina propria fibroblast-like cells and macrophages. In addition, nerve fibers in the cecum were in more frequent contact with immune cells such as macrophages and plasma cells than nerve fibers in the DC. Thus, the present histological analysis suggested that the mucosal nerve network in the large intestine possessed both regional universality and various specificities, and revealed the intimate relationship between the nerve network and immune cells, especially in the cecum.


Assuntos
Intestino Grosso , Mucosa , Ratos , Animais , Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/metabolismo , Intestino Delgado , Ceco
4.
Cell Tissue Res ; 389(1): 71-83, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35403967

RESUMO

The composition of fecal bacteria is reported to change throughout the day, whereas the circadian rhythmicity of indigenous bacteria that settle on the epithelium is mostly unknown. The present study aimed to clarify the diurnal changes in the settlement of indigenous bacteria in the rat alimentary tract using histological analysis. The settlement of indigenous bacteria on the mucosal epithelium throughout the day and the diurnal changes in settlement levels were observed in the esophagus, the nonglandular area of the stomach, and the ileum. The peak of zeitgeber time (ZT) in the settlement level differed by segment: ZT 12 in the esophagus, ZT 6 in the nonglandular area of the stomach, and ZT 0 in the ileum. Moreover, 16S rRNA amplicon sequencing using tissue sections revealed that the compositions of the indigenous bacteria in the ileum differed among ZT. In the intervillous spaces of the ileum, the formation level of the mucus layer, one of the most fundamental host defenses against bacteria, was lowest at ZT 0. Bacteria were preferentially adjacent to the villous epithelium in the area without coverage by the mucus layer at ZT 0. These findings collectively suggest that the settlement level and possibly the composition of the indigenous bacteria changed diurnally in various segments of the alimentary tract, and the formation of the mucus layer might be the most likely to lead to such diurnal changes in indigenous bacteria, at least in the ileum.


Assuntos
Trato Gastrointestinal , Estômago , Animais , Bactérias , Ritmo Circadiano , Esôfago , RNA Ribossômico 16S/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA