Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Microbiol Resour Announc ; 13(6): e0116923, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682775

RESUMO

We report here the whole-genome sequence of the Chlamydia psittaci NRM_5 strain isolated from the fecal samples of wild Indian ring-necked parakeet (Psittacula krameri manillensis) in Japan. The sequence type is ST35, which is known to be associated with pigeons and doves, indicating the potential for transmission among bird species.

2.
Virus Res ; 343: 199351, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453057

RESUMO

Talaromyces spp. have a worldwide distribution, are ecologically diverse and have been isolated from numerous different substrates. Talaromyces spp. are considered biotechnologically important due to their ability to produce a range of enzymes and pigments. Talaromyces pinophilus, belonging to genus Talaromyces and family Trichocomaceae, is known for producing several important bioactive metabolites. Here we report the isolation and characterisation of a partitivirus from T. pinophilus which we have nominated Talaromyces pinophilus partitivirus-1 (TpPV-1). TpPV-1 possesses a genome consisting of three double stranded (ds) RNA segments i.e., dsRNAs1-3, 1824 bp, 1638 bp and 1451 bp respectively, which are encapsidated in icosahedral particles 35 nm in diameter. Both dsRNA1 and dsRNA2 contain a single open reading frame (ORF) encoding respectively a 572 amino acid (aa) protein of 65 kDa and a 504 aa protein of 50 kDa. The third segment (dsRNA3) is potentially a satellite RNA. Phylogenetic analysis revealed that the TpPV-1 belongs to the family Partitiviridae in the proposed genus Zetapartitivirus. TpPV-1 infection decreases the mycelial growth rate of the host fungus and alters pigmentation as indicated by time course experiments performed on a range of different solid media comparing virus-infected and virus-free isogenic lines. This is the first report of mycovirus infection in T. pinophilus and may provide insights into understanding the effect of the mycovirus on the production of enzymes and pigments by the host fungus.


Assuntos
Micovírus , Vírus de RNA , Talaromyces , Talaromyces/genética , Talaromyces/metabolismo , Filogenia , RNA de Cadeia Dupla/metabolismo , Genoma Viral , RNA Viral/genética , RNA Viral/metabolismo , Fases de Leitura Aberta
4.
J Gen Virol ; 104(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38015047

RESUMO

Paeciliomyces variotii is a thermo-tolerant, ubiquitous fungus commonly found in food products, indoor environments, soil and clinical samples. It is a well-known biocontrol agent used against phytopathogenic fungi and its metabolites have many industrial applications. Rare reports of P. variotii-related human infections have been found in the medical literature. In this study, we report for the first time the infection of P. variotii isolated from a soil sample collected in a rice field with a double-stranded RNA virus, Paeciliomyces variotii partitivirus 1 (PvPV-1) in the family Partitiviridae. P. variotii harboured icosahedral virus particles 30 nm in diameter with two dsRNA segments 1758 and 1356 bp long. Both dsRNA1 and dsRNA2 have a single open reading frame encoding proteins of 63 and 40 kDa, respectively. These proteins have significant similarity to the RNA-dependent RNA polymerase and capsid protein encoded by the genomic segments of several viruses from the family Partitiviridae. Phylogenetic analysis revealed that PvPV-1 belongs to the family Partitiviridae but in an unclassified group/genus, tentatively nominated Zetapartitivirus. PvPV-1 was found to increase the growth rate of the host fungus, as indicated by time course experiments performed on a range of different media for virus-infected and virus-free isogenic lines. Further, dual-culture assays performed for both isogenic lines confirmed the antagonistic potential of P. variotii against other phytopathogenic fungi. The findings of this study assist us in understanding P. variotii as a potential biocontrol agent, together with plant-fungus-virus interactions.


Assuntos
Byssochlamys , Proteínas do Capsídeo , Humanos , Filogenia , Solo
5.
Microbes Environ ; 38(3)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704449

RESUMO

Zizania latifolia cultivars infected by the endophytic fungus Ustilago esculenta develop an edible stem gall. Stem gall development varies among cultivars and individuals and may be affected by the strain of U. esculenta. To isolate haploids from two Z. latifolia cultivars in our paddy fields, Shirakawa and Ittenkou, we herein performed the sporadic isolation of U. esculenta strains from stem gall tissue, a PCR-based assessment of the mating type, and in vitro mating experiments. As a result, we obtained heterogametic strains of MAT-2 and MAT-3 as well as MAT-2, but not MAT-3, haploid strains. Another isolation method, in which we examined poorly growing small clusters of sporidia derived from teliospores, succeeded in isolating a MAT-3 haploid strain. We also identified the mating types of 10 U. esculenta strains collected as genetic resources from different areas in Japan. All strains, except for one MAT-1 haploid strain, were classified as MAT-2 haploid strains or heterogametic strains of MAT-2 and MAT-3. The isolated strains of MAT-1, MAT-2, and MAT-3 mated with each other to produce hyphae. Collectively, these results indicate that the mating types of U. esculenta infecting Z. latifolia cultivars in Japan are biased towards MAT-2 and MAT-3 and that U. esculenta populations in these Japanese cultivars may be characterized by the low isolation efficiency of the MAT-3 haploid.


Assuntos
Basidiomycota , Humanos , Japão , Reprodução , Hifas , Poaceae
6.
Front Microbiol ; 14: 1243068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771702

RESUMO

Two endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3), have been discovered in pathogens targeting asparagus. In this study, we analyzed the nick structure in the RNA genomes of PEV2 and PEV3 in the host oomycetes. Northern blot hybridization using positive and negative strand-specific RNA probes targeting the 5' and 3' regions of PEV2 and PEV3 RNA genomes revealed approximately 1.0 kilobase (kb) RNA fragments located in the 5' regions of the two genomes. 3' RACE analysis determined that the size of the RNA fragments were 958 nucleotides (nt) for PEV2 and 968 nt for PEV3. We have successfully constructed full-length cDNA clones of the entire RNA genomes of PEV2 and PEV3 using a homologous recombination system in the yeast, Saccharomyces cerevisiae. These full-length cDNA sequences were ligated downstream of a constitutive expression promoter (TDH3) or a galactose-inducing promoter (GAL1) in the shuttle vector to enable the production of the full-length RNA transcripts of PEV2 and PEV3 in yeast cells. Interestingly, a 1.0 kb RNA fragment from the PEV3 positive-strand transcript was also detected with a 5'-region RNA probe, indicating that site-specific cleavage also occurred in yeast cells. Further, when PEV2 or PEV3 mRNA was overexpressed under the GAL1 promoter, yeast cell growth was suppressed. A fusion protein combining EGFP to the N-terminus of the full-length PEV2 ORF or C-terminus of the full-length PEV3 ORF was expressed, and allowed PEV2 and PEV3 ORFs to be successfully visualized in yeast cells. Expression of the fusion protein also revealed presence of heterogeneous bodies in the cells.

7.
Virus Res ; 331: 199128, 2023 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-37149224

RESUMO

Positive-strand RNA viruses replicate their RNA in the viral replication complex, a spherical structure formed by remodeling of host intracellular membranes. This process also requires the interaction between viral membrane-associated replication proteins and host factors. We previously identified the membrane-associated determinant of the replicase of plantago asiatica mosaic virus (PlAMV), a positive-strand RNA virus of the genus Potexvirus, in its methyltransferase (MET) domain, and suggested that its interaction with host factors is required to establish viral replication. Here we identified Nicotiana benthamiana dynamin-related protein 2 (NbDRP2) as an interactor of the MET domain of the PlAMV replicase by co-immunoprecipitation (Co-IP) and mass spectrometry analysis. NbDRP2 is closely related to the DRP2 subfamily proteins in Arabidopsis thaliana, AtDRP2A and AtDRP2B. Confocal microscopy observation and Co-IP confirmed the interaction between the MET domain and NbDRP2. Also, the expression of NbDRP2 was induced by PlAMV infection. PlAMV accumulation was reduced when the expression of NbDRP2 gene was suppressed by virus-induced gene silencing. In addition, PlAMV accumulation was reduced in protoplasts treated with dynamin inhibitor. These results indicate a proviral role of the interaction of NbDRP2 with the MET domain in PlAMV replication.


Assuntos
Arabidopsis , Potexvirus , Potexvirus/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Arabidopsis/genética , Nucleotidiltransferases/metabolismo , Dinaminas/metabolismo , Replicação Viral , Nicotiana
8.
Virus Res ; 325: 199045, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681193

RESUMO

The characterization of viruses from environmental samples could aid in our understanding of their ecological significance and potential for biotechnological exploitation. While there has been much focus on pathogenic fungi or commercially cultivated mushrooms, attention to viruses from wild Basidiomycota mushrooms is lacking. Therefore, in this study, we conducted viral screening of fungal mycelia isolated from wild basidiocarps using agarose gel electrophoresis (AGE) and fragmented and primer-ligated dsRNA sequencing (FLDS). Among the 51 isolates, seven isolates were detected with virus-like bands during the initial screening with AGE, but only five isolates were detected with viruses after long-term storage. Using the FLDS method, we obtained seven viral genome sequences, including five double-stranded RNA (dsRNA) viruses belonging to Partitiviridae and Curvulaviridae, one positive-sense single-stranded RNA (ssRNA) virus belonging to Endornaviridae and one negative-sense ssRNA virus belonging to Tulasviridae (Bunyavirales). All viruses characterized in this study are novel species. These findings greatly expanded our knowledge of the diversity of RNA viruses from environmental samples.


Assuntos
Agaricales , Micovírus , Vírus de RNA , RNA Viral/genética , Agaricales/genética , Japão , RNA de Cadeia Dupla/genética , Filogenia , Genoma Viral
9.
Plant Biotechnol (Tokyo) ; 40(4): 289-299, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38434119

RESUMO

Agrobacterium tumefaciens (Rhizobium radiobacter) is used for the transient expression of foreign genes by the agroinfiltration method, but the introduction of foreign genes often induces transcriptional and/or post-transcriptional gene silencing (TGS and/or PTGS). In this study, we characterized the structural features of T-DNA that induce TGS during agroinfiltration. When A. tumefaciens cells harboring an empty T-DNA plasmid containing the cauliflower mosaic virus (CaMV) 35S promoter were infiltrated into the leaves of Nicotiana benthamiana line 16c with a GFP gene over-expressed under the control of the same promoter, no small interfering RNAs (siRNAs) were derived from the GFP sequence. However, siRNAs derived from the CaMV 35S promoter were detected, indicating that TGS against the GFP gene was induced. When the GFP gene was inserted into the T-DNA plasmid, PTGS against the GFP gene was induced whereas TGS against the CaMV 35S promoter was suppressed. We also showed the importance of terminator sequences in T-DNA for gene silencing. Therefore, depending on the combination of promoter, terminator and coding sequences on T-DNA and the host nuclear genome, either or both TGS and/or PTGS could be induced by agroinfiltration. Furthermore, we showed the possible involvement of three siRNA-producing Dicers (DCL2, DCL3 and DCL4) in the induction of TGS by the co-agroinfiltration method. Especially, DCL2 was probably the most important among them in the initial step of TGS induction. These results are valuable for controlling gene expression by agroinfiltration.

10.
Viruses ; 14(11)2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36423181

RESUMO

Turfgrass used in various areas of the golf course has been found to present anthracnose disease, which is caused by Colletotrichum spp. To obtain potential biological agents, we identified four novel RNA viruses and obtained full-length viral genomes from turfgrass pathogenic Colletotrichum spp. in Japan. We characterized two novel dsRNA partitiviruses: Colletotrichum associated partitivirus 1 (CaPV1) and Colletotrichum associated partitivirus 2 (CaPV2), as well as two negative single-stranded (ss) RNA viruses: Colletotrichum associated negative-stranded RNA virus 1 (CaNSRV1) and Colletotrichum associated negative-stranded RNA virus 2 (CaNSRV2). Using specific RT-PCR assays, we confirmed the presence of CaPV1, CaPV2 and CaNSRV1 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-264, as well as CaNSRV2 in dsRNAs from original and sub-isolates of Colletotrichum sp. MBCT-288. This is the first time mycoviruses have been discovered in turfgrass pathogenic Colletotrichum spp. in Japan. CaPV1 and CaPV2 are new members of the newly proposed genus "Zetapartitivirus" and genus Alphapartitivirus, respectively, in the family Partitiviridae, according to genomic characterization and phylogenetic analysis. Negative sense ssRNA viruses CaNSRV1 and CaNSRV2, on the other hand, are new members of the family Phenuiviridae and the proposed family "Mycoaspirividae", respectively. These findings reveal previously unknown RNA virus diversity and evolution in turfgrass pathogenic Colletotrichum spp.


Assuntos
Colletotrichum , Vírus de RNA , Colletotrichum/genética , Filogenia , Japão , RNA Viral/genética , Genômica , RNA de Cadeia Dupla/genética
11.
Plant Biotechnol (Tokyo) ; 39(4): 405-414, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37283613

RESUMO

Petunia vein clearing virus (PVCV) is a type member of the genus Petuvirus within the Caulimoviridae family and is defined as one viral unit consisting of a single open reading frame (ORF) encoding a viral polyprotein and one quasi-long terminal repeat (QTR) sequence. Since some full-length PVCV sequences are found in the petunia genome and a vector for horizontal transmission of PVCV has not been identified yet, PVCV is referred to as an endogenous pararetrovirus. Molecular mechanisms of replication, gene expression and horizontal transmission of endogenous pararetroviruses in plants are elusive. In this study, agroinfiltration experiments using various PVCV infectious clones indicated that the replication (episomal DNA synthesis) and gene expression of PVCV were efficient when the QTR sequences are present on both sides of the ORF. Whereas replacement of the QTR with another promoter and/or terminator is possible for gene expression, it is essential for QTR sequences to be on both sides for viral replication. Although horizontal transmission of PVCV by grafting and biolistic inoculation was previously reported, agroinfiltration is a useful and convenient method for studying its replication and gene expression.

13.
Front Microbiol ; 12: 773062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745080

RESUMO

Alternaria alternata virus 1 (AaV1) has been identified in the saprophytic fungus Alternaria alternata strain EGS 35-193. AaV1 has four genomic double-stranded (ds)RNA segments (dsRNA1-4) packaged in isometric particles. The 3' end of each coding strand is polyadenylated (36-50nt), but the presence of a cap structure at each 5' end has not previously been investigated. Here, we have characterized the AaV1 genome and found that it has unique features among the mycoviruses. We confirmed the existence of cap structures on the 5' ends of the AaV1 genomic dsRNAs using RNA dot blots with anti-cap antibodies and the oligo-capping method. Polyclonal antibodies against purified AaV1 particles specifically bound to an 82kDa protein, suggesting that this protein is the major capsid component. Subsequent Edman degradation indicated that the AaV1 dsRNA3 segment encodes the major coat protein. Two kinds of defective AaV1 dsRNA2, which is 2,794bp (844 aa) in length when intact, appeared in EGS 35-193 during subculturing, as confirmed by RT-PCR and northern hybridization. Sequence analysis revealed that one of the two defective dsRNA2s contained a 231bp deletion, while the other carried both the 231bp deletion and an additional 465bp deletion in the open reading frame. Both deletions occurred in-frame, resulting in predicted proteins of 767 aa and 612 aa. The fungal isolates carrying virions with the defective dsRNA2s showed impaired growth and abnormal pigmentation. To our best knowledge, AaV1 is the first dsRNA virus to be identified with both 5' cap and 3'poly(A) structures on its genomic segments, as well as the specific deletions of dsRNA2.

14.
Arch Virol ; 166(12): 3483-3486, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608525

RESUMO

A double-stranded RNA (dsRNA) of approximately 16 kbp was isolated from symptomless common buckwheat (Fagopyrum esculentum) plants. The size of the dsRNA suggested that it was the replicative form of an endornavirus. The dsRNA was sequenced, and it consisted of 15,677 nt, containing a single open reading frame that potentially encoded a polyprotein of 5190 aa. The polyprotein contained conserved domains for a viral methyltransferase, viral RNA helicase 1, MSCRAMM family adhesion SdrC, UDP-glycosyltransferase, and viral RNA-dependent RNA polymerase 2. A site-specific nick in the plus strand was detected near the 5' end of the dsRNA. BLASTp analysis showed that the polyprotein shared the highest identity with the polyprotein of winged bean endornavirus 1. Results of phylogenetic analysis supported placing this novel virus from common buckwheat, which was provisionally named "Fagopyrum esculentum endornavirus 1", in the genus Alphaendornavirus of the family Endornaviridae.


Assuntos
Fagopyrum , Vírus de RNA , Sequência de Bases , Fagopyrum/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , Análise de Sequência de DNA , Proteínas Virais/genética
15.
Front Microbiol ; 12: 633502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633714

RESUMO

Two novel endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3) were found in isolates of a Phytophthora pathogen of asparagus collected in Japan. A molecular phylogenetic analysis indicated that PEV2 and PEV3 belong to the genus Alphaendornavirus. The PEV2 and PEV3 genomes consist of 14,345 and 13,810 bp, and they contain single open reading frames of 4,640 and 4,603 codons, respectively. Their polyproteins contain the conserved domains of an RNA helicase, a UDP-glycosyltransferase, and an RNA-dependent RNA polymerase, which are conserved in other alphaendornaviruses. PEV2 is closely related to Brown algae endornavirus 2, whereas PEV3 is closely related to Phytophthora endornavirus 1 (PEV1), which infects a Phytophthora sp. specific to Douglas fir. PEV2 and PEV3 were detected at high titers in two original Phytophthora sp. isolates, and we found a sub-isolate with low titers of the viruses during subculture. We used the high- and low-titer isolates to evaluate the effects of the viruses on the growth, development, and fungicide sensitivities of the Phytophthora sp. host. The high-titer isolates produced smaller mycelial colonies and much higher numbers of zoosporangia than the low-titer isolate. These results suggest that PEV2 and PEV3 inhibited hyphal growth and stimulated zoosporangium formation. The high-titer isolates were more sensitive than the low-titer isolate to the fungicides benthiavalicarb-isopropyl, famoxadone, and chlorothalonil. In contrast, the high-titer isolates displayed lower sensitivity to the fungicide metalaxyl (an inhibitor of RNA polymerase I) when compared with the low-titer isolate. These results indicate that persistent infection with PEV2 and PEV3 may potentially affect the fungicide sensitivities of the host oomycete.

16.
Front Microbiol ; 11: 593784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193269

RESUMO

Various viruses infect Magnaporthe oryzae (syn. Pyricularia oryzae), which is a well-studied fungus that causes rice blast disease. Most research has focused on the discovery of new viruses and the hypovirulence-associated traits conferred by them. Therefore, the diversity and prevalence of viruses in wild fungal populations have not been explored. We conducted a comprehensive screening of M. oryzae mycoviruses from various regions in Japan using double-stranded RNA (dsRNA) electrophoresis and RT-PCR assays. We detected three mycoviruses, Magnaporthe oryzae virus 2 (MoV2), Magnaporthe oryzae chrysovirus 1 (MoCV1), and Magnaporthe oryzae partitivirus 1 (MoPV1), among 127 of the 194 M. oryzae strains screened. The most prevalent virus was MoPV1 (58.8%), which often co-infected in a single fungal strain together with MoV2 or MoCV1. MoV2 and MoCV1 were found in 22.7 and 10.8% of strains, respectively, and they were usually distributed in different regions so that mixed-infection with these two mycoviruses was extremely rare. The predominance of MoPV1 in M. oryzae is supported by significant negative values from neutrality tests, which indicate that the population size of MoPV1 tends to increase. Population genetic analyses revealed high nucleotide diversity and the presence of phylogenetically diverse subpopulations among the MoV2 isolates. This was not the case for MoPV1. Furthermore, studies of a virus-cured M. oryzae strain revealed that MoV2 does not cause any abnormalities or symptoms in its host. However, a leaf sheath inoculation assay showed that its presence slightly increased the speed of mycelial growth, compared with virus-free mycelia. These results demonstrate that M. oryzae in Japan harbors diverse dsRNA mycovirus communities with wide variations in their population structures among different viruses.

17.
Front Microbiol ; 11: 1641, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765467

RESUMO

Fungi are a rich source of natural products with biological activities. In this study, we evaluated viral effects on secondary metabolism of the rice blast fungus Magnaporthe oryzae using an isolate of APU10-199A co-infected with three types of mycoviruses: a totivirus, a chrysovirus, and a partitivirus. Comparison of the secondary metabolite profile of APU10-199A with that of the strain lacking the totivirus and chrysovirus showed that a mycotoxin tenuazonic (TeA) acid was produced in a manner dependent on the mycoviruses. Virus reinfection experiments verified that TeA production was dependent on the totivirus. Quantitative reverse transcription PCR and RNA-sequencing analysis indicated the regulatory mechanism underlying viral induction of TeA: the totivirus activates the TeA synthetase gene TAS1 by upregulating the transcription of the gene encoding a Zn(II)2-Cys6-type transcription factor, TAS2. To our knowledge, this is the first report that confirmed mycovirus-associated regulation of secondary metabolism at a transcriptional level by viral reinfection. Because only treatment with dimethyl sulfoxide has been reported to trigger TeA production in this fungus without gene manipulation, our finding highlights the potential of mycoviruses as an epigenomic regulator of fungal secondary metabolism.

18.
Plant J ; 103(2): 497-511, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32100385

RESUMO

White areas of star-type bicolour petals of petunia (Petunia hybrida) are caused by post-transcriptional gene silencing (PTGS) of the key enzyme of anthocyanin biosynthesis. We observed blotched flowers and a vein-clearing symptom in aged petunia plants. To determine the cause of blotched flowers, we focused on an endogenous pararetrovirus, petunia vein clearing virus (PVCV), because this virus may have a suppressor of PTGS (VSR). Transcripts and episomal DNAs derived from proviral PVCVs accumulated in aged plants, indicating that PVCV was activated as the host plant aged. Furthermore, DNA methylation of CG and CHG sites in the promoter region of proviral PVCV decreased in aged plants, suggesting that poor maintenance of DNA methylation activates PVCV. In parallel, de novo DNA methylation of CHH sites in its promoter region was also detected. Therefore, both activation and inactivation of PVCV occurred in aged plants. The accumulation of PVCV transcripts and episomal DNAs in blotched regions and the detection of VSR activity support a mechanism in which suppression of PTGS by PVCV causes blotched flowers.


Assuntos
Caulimoviridae/metabolismo , Flores/virologia , Petunia/virologia , Caulimoviridae/genética , Cor , Metilação de DNA , DNA Viral/genética , Flores/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Petunia/anatomia & histologia , Provírus/genética , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real
19.
J Gen Virol ; 101(2): 143-144, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31958044

RESUMO

Members of the family Chrysoviridae are isometric, non-enveloped viruses with segmented, linear, dsRNA genomes. There are 3-7 genomic segments, each of which is individually encapsidated. Chrysoviruses infect fungi, plants and possibly insects, and may cause hypovirulence in their fungal hosts. Chrysoviruses have no known vectors and lack an extracellular phase to their replication cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Chrysoviridae, which is available at ictv.global/report/chrysoviridae.


Assuntos
Vírus de RNA/classificação , Animais , Classificação , Fungos/patogenicidade , Fungos/virologia , Genoma Viral , Insetos/virologia , Plantas/virologia
20.
Front Microbiol ; 11: 607795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424809

RESUMO

The filamentous fungal pathogen Aspergillus fumigatus is one of the most common causal agents of invasive fungal infection in humans; the infection is associated with an alarmingly high mortality rate. In this study, we investigated whether a mycovirus, named AfuPmV-1M, can reduce the virulence of A. fumigatus in a mouse infection model. AfuPmV-1M has high sequence similarity to AfuPmV-1, one of the polymycovirus that is a capsidless four-segment double-stranded RNA (dsRNA) virus, previously isolated from the genome reference strain of A. fumigatus, Af293. However, we found the isolate had an additional fifth dsRNA segment, referred to as open reading frame 5 (ORF5), which has not been reported in AfuPmV-1. We then established isogenic lines of virus-infected and virus-free A. fumigatus strains. Mycovirus infection had apparent influences on fungal phenotypes, with the virus-infected strain producing a reduced mycelial mass and reduced conidial number in comparison with these features of the virus-free strain. Also, resting conidia of the infected strain showed reduced adherence to pulmonary epithelial cells and reduced tolerance to macrophage phagocytosis. In an immunosuppressed mouse infection model, the virus-infected strain showed reduced mortality in comparison with mortality due to the virus-free strain. RNA sequencing and high-performance liquid chromatography (HPLC) analysis showed that the virus suppressed the expression of genes for gliotoxin synthesis and its production at the mycelial stage. Conversely, the virus enhanced gene expression and biosynthesis of fumagillin. Viral RNA expression was enhanced during conidial maturation, conidial germination, and the mycelial stage. We presume that the RNA or translation products of the virus affected fungal phenotypes, including spore formation and toxin synthesis. To identify the mycovirus genes responsible for attenuation of fungal virulence, each viral ORF was ectopically expressed in the virus-free KU strain. We found that the expression of ORF2 and ORF5 reduced fungal virulence in the mouse model. In addition, ORF3 affected the stress tolerance of host A. fumigatus in culture. We hypothesize that the respective viral genes work cooperatively to suppress the pathogenicity of the fungal host.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA