Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674764

RESUMO

The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum ß-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.

2.
Talanta ; 253: 123937, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179557

RESUMO

Glyphosate is the most widely used herbicide in the world and, in view of its toxicity, there is a quest for easy-to-use, but reliable methods to detect it in water. To address this issue, we realized a simple, rapid, and highly sensitive immunosensor based on gold coated magnetic nanoparticles (MNPs@Au) to detect glyphosate in tap water. Not only the gold shell provided a sensitive optical transduction of the biological signal - through the shift of the local surface plasmon resonance (LSPR) entailed by the nanoparticle aggregation -, but it also allowed us to use an effective photochemical immobilization technique to tether oriented antibodies straight on the nanoparticles surface. While such a feature led to aggregates in which the nanoparticles were at close proximity each other, the magnetic properties of the core offered us an efficient tool to steer the nanoparticles by a rotating magnetic field. As a result, the nanoparticle aggregation in presence of the target could take place at higher rate (enhanced diffusion) with significant improvement in sensitivity. As a matter of fact, the combination of plasmonic and magnetic properties within the same nanoparticles allowed us to realize a colorimetric biosensor with a limit of detection (LOD) of 20 ng∙L-1.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Água , Ouro , Fenômenos Magnéticos
3.
Talanta ; 154: 438-45, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154697

RESUMO

A Laccase-based biosensor for the determination of phenolic compounds was developed by using Matrix Assisted Pulsed Laser Evaporation as an innovative enzyme immobilization technique. and the deriving biosensor was characterized and applied for the first time. Laccase was immobilized onto different substrates including screen printed carbon electrodes and spectroscopic, morphologic and electrochemical characterizations were carried out. A linear range from 1 to 60µM was achieved working at 5.5pH and -0.2V detection potential vs Ag pseudoreference. The limits of detection and quantification were found to be 1 and 5µM, respectively. A good fabrication reproducibility, stability of response and selectivity toward interferents were also found The potential of the developed biosensor was tested in the determination of total polyphenol content in real matrices (tea infusion, ethanolic extract from Muscari comosum bulbs and aqueous solution of a food supplement from black radish root and artichoke leaves) and the results were compared with those obtained by using the Folin-Ciocalteu method.


Assuntos
Técnicas Biossensoriais , Eletrodos , Enzimas Imobilizadas , Lacase , Reprodutibilidade dos Testes , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA