Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 394, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046390

RESUMO

Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr3Si7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr3Si7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.

2.
Phys Rev Lett ; 124(11): 117203, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242686

RESUMO

We report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline Ni_{1-x}Rh_{x} alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed continuously to zero at x_{crit}=0.375 while the magnetic volume fraction remains 100% up to x_{crit}, pointing to a second order transition. Non-Fermi liquid behavior is observed close to x_{crit}, where the electronic specific heat C_{el}/T diverges logarithmically, while immediately above x_{crit} the volume thermal expansion coefficient α_{V}/T and the Grüneisen ratio Γ=α_{V}/C_{el} both diverge logarithmically in the low temperature limit, further indication of a ferromagnetic quantum critical point in Ni_{1-x}Rh_{x}.

3.
Phys Rev B ; 992019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38487214

RESUMO

Kondo-based semimetals and semiconductors are of extensive current interest as a viable platform for strongly correlated states in the dilute carrier limit. It is thus important to explore the routes to understand such systems. One established pathway is through the Kondo effect in metallic nonmagnetic analogs, in the so called half-filling case of one conduction electron and one 4f electron per site. Here, we demonstrate that Kondo-based semimetals develop out of conduction electrons with a low-carrier density in the presence of an even number of rare-earth sites. We do so by studying the Kondo material Yb3Ir4Ge13 along with its closed-4f -shell counterpart, Lu3Ir4Ge13. Through magnetotransport, optical conductivity, and thermodynamic measurements, we establish that the correlated semimetallic state of Yb3Ir4Ge13 below its Kondo temperature originates from the Kondo effect of a low-carrier conduction-electron background. In addition, it displays fragile magnetism at very low temperatures, which in turn, can be tuned to a Griffiths-phase-like regime through Lu-for-Yb substitution. These findings are connected with recent theoretical studies in simplified models. Our results can pave the way to exploring strong correlation physics in a semimetallic environment.

4.
J Phys Condens Matter ; 30(36): 365602, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30079890

RESUMO

The fragile nature of itinerant magnetism can be exploited using non-thermal parameters to study quantum criticality. The recently discovered quantum critical point (QCP) in the Sc-doped (hole-like doping) itinerant antiferromagnet TiAu (Ti1-x Sc x Au) raised questions about the effects of the crystal and electronic structures on the overall magnetic behavior. In this study, doping with V (electron-like doping) in Ti1-x V x Au introduces chemical disorder which suppresses antiferromagnetic order from [Formula: see text] 36 K for x = 0 down to 10 K for x = 0.15, whereupon a solubility limit is reached. Signatures of non-Fermi-liquid behavior are observed in transport and specific heat measurements similar to Ti1-x Sc x Au, even though Ti1-x V x Au is far from a QCP for the accessible compositions [Formula: see text].

5.
J Phys Condens Matter ; 30(3): 035401, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29256437

RESUMO

The evolution of the crystal structure and electrical transport properties of distorted layered transition metal dichalcogenide ReSe2 was studied under high pressure up to ~90 GPa by Raman spectroscopy and electrical resistivity measurements accompanied by ab initio electronic band structure calculations. Raman spectroscopy studies indicate an isostructural phase transition due to layer sliding at ~7 GPa, to the distorted 1T-phase which remains stable up to the highest pressures employed in these experiments. From a direct band gap semiconductor at ambient pressure, ReSe2 undergoes pressure-induced metallization at pressures ~35 GPa, in agreement with the ab initio calculations. Resistivity measurements performed with different loading conditions reveal the possible emergence of superconductivity, which is most likely not an intrinsic property of ReSe2, but is rather conditioned by internal stresses upon compression.

6.
J Phys Condens Matter ; 29(37): 373002, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28598333

RESUMO

In this review, an overview of itinerant magnets without magnetic elements is presented, beginning with a comparison of the local and itinerant moment pictures, the two extremes of magnetism. Then, the theoretical developments leading up to the self-consistent renormalization theory of spin fluctuations will be discussed, followed by an introduction to quantum criticality and the experimental signatures associated with systems near a quantum critical point. Three itinerant magnets without magnetic elements, ZrZn2, Sc3.1In, and TiAu are the focus of this review, as their empty d shells set them apart in their purely itinerant character, while several enhanced Pauli paramagnets and intermediate moment magnets are also discussed to put the overall comparison into perspective.

8.
Sci Adv ; 2(7): e1600319, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27453942

RESUMO

The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.


Assuntos
Materiais Biocompatíveis/química , Ligas Dentárias/química , Cristalografia por Raios X , Dureza , Microscopia Eletrônica de Varredura
9.
Rep Prog Phys ; 79(8): 084505, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376547

RESUMO

Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed.

10.
Nat Commun ; 6: 7701, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26166042

RESUMO

The origin of magnetism in metals has been traditionally discussed in two diametrically opposite limits: itinerant and local moments. Surprisingly, there are very few known examples of materials that are close to the itinerant limit, and their properties are not universally understood. In the case of the two such examples discovered several decades ago, the itinerant ferromagnets ZrZn2 and Sc3In, the understanding of their magnetic ground states draws on the existence of 3d electrons subject to strong spin fluctuations. Similarly, in Cr, an elemental itinerant antiferromagnet with a spin density wave ground state, its 3d electron character has been deemed crucial to it being magnetic. Here, we report evidence for an itinerant antiferromagnetic metal with no magnetic constituents: TiAu. Antiferromagnetic order occurs below a Néel temperature of 36 K, about an order of magnitude smaller than in Cr, rendering the spin fluctuations in TiAu more important at low temperatures. This itinerant antiferromagnet challenges the currently limited understanding of weak itinerant antiferromagnetism, while providing insights into the effects of spin fluctuations in itinerant-electron systems.

11.
Nat Commun ; 3: 1192, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23149737

RESUMO

A topological insulator protected by time-reversal symmetry is realized via spin-orbit interaction-driven band inversion. The topological phase in the Bi(1-x)Sb(x) system is due to an odd number of band inversions. A related spin-orbit system, the Pb(1-x)Sn(x)Te, has long been known to contain an even number of inversions based on band theory. Here we experimentally investigate the possibility of a mirror symmetry-protected topological crystalline insulator phase in the Pb(1-x)Sn(x)Te class of materials that has been theoretically predicted to exist in its end compound SnTe. Our experimental results show that at a finite Pb composition above the topological inversion phase transition, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order distinct from that observed in Bi(1-x)Sb(x). Our observation of the spin-polarized Dirac surface states in the inverted Pb(1-x)Sn(x)Te and their absence in the non-inverted compounds related via a topological phase transition provide the experimental groundwork for opening the research on novel topological order in quantum devices.

12.
Phys Rev Lett ; 104(21): 216405, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20867124

RESUMO

Bad metal properties have motivated a description of the parent iron pnictides as correlated metals on the verge of Mott localization. What has been unclear is whether interactions can push these and related compounds to the Mott-insulating side of the phase diagram. Here we consider the iron oxychalcogenides La2O2Fe2O(Se,S)2, which contain an Fe square lattice with an expanded unit cell. We show theoretically that they contain enhanced correlation effects through band narrowing compared to LaOFeAs, and we provide experimental evidence that they are Mott insulators with moderate charge gaps. We also discuss the magnetic properties in terms of a Heisenberg model with frustrating J1-J2-J2' exchange interactions on a "doubled" checkerboard lattice.

13.
Phys Rev Lett ; 100(10): 106402, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18352215

RESUMO

Temperature- and x-dependent Raman scattering studies of the charge-density-wave (CDW) amplitude modes in Cu(x)TiSe(2) show that the amplitude mode frequency omega(0) exhibits identical power-law scaling with the reduced temperature T/T(CDW) and the reduced Cu content x/x(c), i.e., omega(0) approximately (1-p)(0.15) for p=T/T(CDW) or x/x(c), suggesting that mode softening is independent of the control parameter used to approach the CDW transition. We provide evidence that x-dependent mode softening in Cu(x)TiSe(2) is associated with the reduction of the electron-phonon coupling constant, and that x-dependent "quantum" (T approximately 0) mode softening suggests the presence of a quantum critical point within the superconductor phase of Cu(x)TiSe(2).

14.
Phys Rev Lett ; 99(16): 167002, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17995282

RESUMO

We report an optical spectroscopy study on the newly discovered superconductor Cu0.07TiSe2. Consistent with the development from a semimetal or semiconductor with a very small indirect energy gap upon doping TiSe2, it is found that the compound has a low carrier density. Most remarkably, the study reveals a substantial shift of the screened plasma edge in reflectance towards high energy with decreasing temperature. This phenomenon, rarely seen in metals, indicates either a sizable increase of the conducting carrier concentration or/and a decrease of the effective mass of carriers with reducing temperature. We attribute the shift primarily to the latter effect.

15.
Phys Rev Lett ; 99(2): 027404, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17678260

RESUMO

We report an infrared study on 1T-TiSe(2), the parent compound of the newly discovered superconductor Cu(x)TiSe(2). Previous studies of this compound have not conclusively resolved whether it is a semimetal or a semiconductor-information that is important in determining the origin of its unconventional charge density wave (CDW) transition. Here we present optical spectroscopy results that clearly reveal that the compound is metallic in both the high-temperature normal phase and the low-temperature CDW phase. The carrier scattering rate is dramatically different in the normal and CDW phases and the carrier density is found to change with temperature. We conclude that the observed properties can be explained within the scenario of an Overhauser-type CDW mechanism.

16.
Phys Rev Lett ; 98(11): 117007, 2007 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-17501082

RESUMO

A superconducting state (T(c) approximately 4.2 K) has very recently been observed upon successful doping of the charge-density-wave (CDW) ordered triangular lattice TiSe(2), with copper. Using state-of-the-art photoemission spectroscopy we identify, for the first time, momentum-space locations of doped electrons that form the Fermi sea of the superconductor. With doping, we find that kinematic nesting volume increases, whereas coherence of the CDW collective order sharply drops. In superconducting doping, as chemical potential rises, we observe the emergence of a large density of states in the form of a narrow electron pocket near the L point of the Brillouin zone with d-like character. The k-space spectral evolution directly demonstrates, for the first time, that the CDW order parameter microscopically competes with superconductivity in the same band.

17.
J Phys Condens Matter ; 19(17): 176230, 2007 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21690975

RESUMO

We report measurements of thermal expansion on a number of polycrystalline Cu(x)TiSe(2) samples corresponding to the parts of x-T phase diagram with different ground states, as well as the pressure dependence of the superconducting transition temperature, T(c), for samples with three different values of Cu doping. Thermal expansion data suggest that the x-T phase diagram may be more complex than initially reported. T(c) data at elevated pressure can be scaled to the ambient pressure Cu(x)TiSe(2) phase diagram; however, significantly different scaling factors are needed to accommodate the literature data on the charge density wave transition suppression under pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA