Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 19(1): 375, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783944

RESUMO

BACKGROUND: Despite the health concerns and nutritional importance of fatty acids, there is a relative paucity of studies in the literature that report genetic or genomic parameters, especially in the case of sheep populations. To investigate the genetic architecture of fatty acid composition of sheep, we conducted genome-wide association studies (GWAS) and estimated genomic heritabilities for fatty acid profile in Longissimus dorsi muscle of 216 male sheep. RESULTS: Genomic heritability estimates for fatty acid content ranged from 0.25 to 0.46, indicating that substantial genetic variation exists for the evaluated traits. Therefore, it is possible to alter fatty acid profiles through selection. Twenty-seven genomic regions of 10 adjacent SNPs associated with fatty acids composition were identified on chromosomes 1, 2, 3, 5, 8, 12, 14, 15, 16, 17, and 18, each explaining ≥0.30% of the additive genetic variance. Twenty-three genes supporting the understanding of genetic mechanisms of fat composition in sheep were identified in these regions, such as DGAT2, TRHDE, TPH2, ME1, C6, C7, UBE3D, PARP14, and MRPS30. CONCLUSIONS: Estimates of genomic heritabilities and elucidating important genomic regions can contribute to a better understanding of the genetic control of fatty acid deposition and improve the selection strategies to enhance meat quality and health attributes.


Assuntos
Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Genômica , Característica Quantitativa Herdável , Ovinos/genética , Ovinos/metabolismo , Animais , Análise Multivariada
2.
Anim Genet ; 46(4): 381-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036323

RESUMO

An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome-wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species.


Assuntos
Genômica/métodos , Gado/genética , Medical Subject Headings , Terminologia como Assunto , Animais , Bovinos/genética , Cavalos/genética , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Suínos/genética
3.
J Anim Breed Genet ; 132(3): 218-28, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25727456

RESUMO

Bootstrap aggregation (bagging) is a resampling method known to produce more accurate predictions when predictors are unstable or when the number of markers is much larger than sample size, because of variance reduction capabilities. The purpose of this study was to compare genomic best linear unbiased prediction (GBLUP) with bootstrap aggregated sampling GBLUP (Bagged GBLUP, or BGBLUP) in terms of prediction accuracy. We used a 600 K Affymetrix platform with 1351 birds genotyped and phenotyped for three traits in broiler chickens; body weight, ultrasound measurement of breast muscle and hen house egg production. The predictive performance of GBLUP versus BGBLUP was evaluated in different scenarios consisting of including or excluding the TOP 20 markers from a standard genome-wide association study (GWAS) as fixed effects in the GBLUP model, and varying training sample sizes and allelic frequency bins. Predictive performance was assessed via five replications of a threefold cross-validation using the correlation between observed and predicted values, and prediction mean-squared error. GBLUP overfitted the training set data, and BGBLUP delivered a better predictive ability in testing sets. Treating the TOP 20 markers from the GWAS into the model as fixed effects improved prediction accuracy and added advantages to BGBLUP over GBLUP. The performance of GBLUP and BGBLUP at different allele frequency bins and training sample sizes was similar. In general, results of this study confirm that BGBLUP can be valuable for enhancing genome-enabled prediction of complex traits.


Assuntos
Galinhas/genética , Genômica/métodos , Animais , Peso Corporal/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Feminino , Frequência do Gene , Aprendizado de Máquina , Masculino , Glândulas Mamárias Animais/diagnóstico por imagem , Óvulo/metabolismo , Fenótipo , Ultrassonografia
4.
J Anim Breed Genet ; 131(2): 123-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24397350

RESUMO

The objective was to assess goodness of fit and predictive ability of subsets of single nucleotide polymorphism (SNP) markers constructed based on minor allele frequency (MAF), effect sizes and varying marker density. Target traits were body weight (BW), ultrasound measurement of breast muscle (BM) and hen house egg production (HHP) in broiler chickens. We used a 600 K Affymetrix platform with 1352 birds genotyped. The prediction method was genomic best linear unbiased prediction (GBLUP) with 354 564 single nucleotide polymorphisms (SNPs) used to derive a genomic relationship matrix (G). Predictive ability was assessed as the correlation between predicted genomic values and corrected phenotypes from a threefold cross-validation. Predictive ability was 0.27 ± 0.002 for BW, 0.33 ± 0.001 for BM and 0.20 ± 0.002 for HHP. For the three traits studied, predictive ability decreased when SNPs with a higher MAF were used to construct G. Selection of the 20% SNPs with the largest absolute effect sizes induced a predictive ability equal to that from fitting all markers together. When density of markers increased from 5 K to 20 K, predictive ability enhanced slightly. These results provide evidence that designing a low-density chip using low-frequency markers with large effect sizes may be useful for commercial usage.


Assuntos
Galinhas/crescimento & desenvolvimento , Galinhas/genética , Frequência do Gene , Fenótipo , Animais , Peso Corporal , Galinhas/metabolismo , Ovos , Feminino , Marcadores Genéticos/genética , Glândulas Mamárias Animais/metabolismo , Músculos/metabolismo , Polimorfismo de Nucleotídeo Único
5.
J Anim Breed Genet ; 131(3): 183-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24460953

RESUMO

The aim of this study was to separate marked additive genetic variability for three quantitative traits in chickens into components associated with classes of minor allele frequency (MAF), individual chromosomes and marker density using the genomewide complex trait analysis (GCTA) approach. Data were from 1351 chickens measured for body weight (BW), ultrasound of breast muscle (BM) and hen house egg production (HHP), each bird with 354 364 SNP genotypes. Estimates of variance components show that SNPs on commercially available genotyping chips marked a large amount of genetic variability for all three traits. The estimated proportion of total variation tagged by all autosomal SNPs was 0.30 (SE 0.04) for BW, 0.33 (SE 0.04) for BM, and 0.19 (SE 0.05) for HHP. We found that a substantial proportion of this variation was explained by low frequency variants (MAF <0.20) for BW and BM, and variants with MAF 0.10-0.30 for HHP. The marked genetic variance explained by each chromosome was linearly related to its length (R(2) = 0.60) for BW and BM. However, for HHP, there was no linear relationship between estimates of variance and length of the chromosome (R(2) = 0.01). Our results suggest that the contribution of SNPs to marked additive genetic variability is dependent on the allele frequency spectrum. For the sample of birds analysed, it was found that increasing marker density beyond 100K SNPs did not capture additional additive genetic variance.


Assuntos
Galinhas/genética , Marcadores Genéticos/genética , Genômica , Polimorfismo de Nucleotídeo Único , Animais , Cromossomos/genética , Frequência do Gene
6.
J Anim Breed Genet ; 129(6): 474-87, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148973

RESUMO

Linkage disequilibrium (LD) is defined as a non-random association of the distributions of alleles at different loci within a population. This association between loci is valuable in prediction of quantitative traits in animals and plants and in genome-wide association studies. A question that arises is whether standard metrics such as D' and r(2) reflect complex associations in a genetic system properly. It seems reasonable to take the view that loci associate and interact together as a system or network, as opposed to in a simple pairwise manner. We used a Bayesian network (BN) as a representation of choice for an LD network. A BN is a graphical depiction of a probability distribution and can represent sets of conditional independencies. Moreover, it provides a visual display of the joint distribution of the set of random variables in question. The usefulness of BN for linkage disequilibrium was explored and illustrated using genetic marker loci found to have the strongest effects on milk protein in Holstein cattle based on three strategies for ranking marker effect estimates: posterior means, standardized posterior means and additive genetic variance. Two different algorithms, Tabu search (a local score-based algorithm) and incremental association Markov blanket (a constraint-based algorithm), coupled with the chi-square test, were used for learning the structure of the BN and were compared with the reference r(2) metric represented as an LD heat map. The BN captured several genetic markers associated as clusters, implying that markers are inter-related in a complicated manner. Further, the BN detected conditionally dependent markers. The results confirm that LD relationships are of a multivariate nature and that r(2) gives an incomplete description and understanding of LD. Use of an LD Bayesian network enables inferring associations between loci in a systems framework and provides a more accurate picture of LD than that resulting from the use of pairwise metrics.


Assuntos
Bovinos/genética , Desequilíbrio de Ligação , Algoritmos , Animais , Teorema de Bayes , Bovinos/metabolismo , Loci Gênicos/genética , Proteínas do Leite/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA