Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 19: 162-173, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33209959

RESUMO

Novel treatments for Huntington's disease (HD), a progressive neurodegenerative disorder, include selective targeting of the mutant allele of the huntingtin gene (mHTT) carrying the abnormally expanded disease-causing cytosine-adenine-guanine (CAG) repeat. WVE-120101 and WVE-120102 are investigational stereopure antisense oligonucleotides that enable selective suppression of mHTT by targeting single-nucleotide polymorphisms (SNPs) that are in haplotype phase with the CAG repeat expansion. Recently developed long-read sequencing technologies can capture CAG expansions and distant SNPs of interest and potentially facilitate haplotype-based identification of patients for clinical trials of oligonucleotide therapies. However, improved methods are needed to phase SNPs with CAG repeat expansions directly and reliably without need for familial genotype/haplotype data. Our haplotype phasing method uses single-molecule real-time sequencing and a custom algorithm to determine with confidence bases at SNPs on mutant alleles, even without familial data. Herein, we summarize this methodology and validate the approach using patient-derived samples with known phasing results. Comparison of experimentally measured CAG repeat lengths, heterozygosity, and phasing with previously determined results showed improved performance. Our methodology enables the haplotype phasing of SNPs of interest and the disease-causing, expanded CAG repeat of the huntingtin gene, enabling accurate identification of patients with HD eligible for allele-selective clinical studies.

2.
J Immunol ; 204(5): 1386-1394, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953355

RESUMO

The immunologic and therapeutic effects of intratumoral (IT) delivery of a novel virus-like particle as a lymphoma immunotherapy were evaluated in preclinical studies with human cells and a murine model. CMP-001 is a virus-like particle composed of the Qß bacteriophage capsid protein encapsulating an immunostimulatory CpG-A oligodeoxynucleotide TLR9 agonist. In vitro, CMP-001 induced cytokine production, including IFN-α from plasmacytoid dendritic cells, but only in the presence of anti-Qß Ab. In vivo, IT CMP-001 treatment of murine A20 lymphoma enhanced survival and reduced growth of both injected and contralateral noninjected tumors in a manner dependent on both the ability of mice to generate anti-Qß Ab and the presence of T cells. The combination of IT CMP-001 with systemic anti-PD-1 enhanced antitumor responses in both injected and noninjected tumors. IT CMP-001 alone or combined with anti-PD-1 augmented T cell infiltration in tumor-draining lymph nodes. We conclude IT CMP-001 induces a robust antitumor T cell response in an anti-Qß Ab-dependent manner and results in systemic antitumor T cell effects that are enhanced by anti-PD-1 in a mouse model of B cell lymphoma. Early-phase clinical evaluation of CMP-001 and anti-PD-1 combination therapy in lymphoma will begin shortly, based in part on these results.


Assuntos
Imunidade Celular/efeitos dos fármacos , Imunização , Linfoma , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9 , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Animais , Anticorpos Antineoplásicos/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfoma/imunologia , Linfoma/patologia , Linfoma/terapia , Camundongos , Camundongos Knockout , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia
3.
Biochemistry ; 45(28): 8546-55, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16834328

RESUMO

Enzymes that utilize a Schiff-base intermediate formed with their substrates and that share the same alpha/beta barrel fold comprise a mechanistically diverse superfamily defined in the SCOPS database as the class I aldolase family. The family includes the "classical" aldolases fructose-1,6-(bis)phosphate (FBP) aldolase, transaldolase, and 2-keto-3-deoxy-6-phosphogluconate aldolase. Moreover, the N-acetylneuraminate lyase family has been included in the class I aldolase family on the basis of similar Schiff-base chemistry and fold. Herein, we generate primary sequence identities based on structural alignment that support the homology and reveal additional mechanistic similarities beyond the common use of a lysine for Schiff-base formation. The structural and mechanistic correspondence comprises the use of a catalytic dyad, wherein a general acid/base residue (Glu, Tyr, or His) involved in Schiff-base chemistry is stationed on beta-strand 5 of the alpha/beta barrel. The role of the acid/base residue was probed by site-directed mutagenesis and steady-state and pre-steady-state kinetics on a representative member of this family, FBP aldolase. The kinetic results are consistent with the participation of this conserved residue or position in the protonation of the carbinolamine intermediate and dehydration of the Schiff base in FBP aldolase and, by analogy, the class I aldolase family.


Assuntos
Aldeído Liases/química , Aldeído Liases/genética , Sequência de Aminoácidos , Catálise , Evolução Molecular , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Bases de Schiff/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA