RESUMO
Endoplasmic reticulum (ER) stress induces the repression of protein synthesis throughout the cell. Attempts to understand how localized stress leads to widespread repression have been limited by difficulties in resolving translation rates at the subcellular level. Here, using live-cell imaging of reporter mRNA translation, we unexpectedly found that during ER stress, active translation at mitochondria was significantly protected. The mitochondrial protein ATPase family AAA domain-containing protein 3A (ATAD3A) interacted with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and mediated this effect on localized translation by competing for binding with PERK's target, eukaryotic initiation factor 2 (eIF2). PERK-ATAD3A interactions increased during ER stress, forming mitochondria-ER contact sites. Furthermore, ATAD3A binding attenuated local PERK signaling and rescued the expression of some mitochondrial proteins. Thus, PERK-ATAD3A interactions can control translational repression at a subcellular level, mitigating the impact of ER stress on the cell.
Assuntos
ATPases Associadas a Diversas Atividades Celulares , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos , Proteínas de Membrana , Proteínas Mitocondriais , Biossíntese de Proteínas , eIF-2 Quinase , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , eIF-2 Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
Organelles form membrane contact sites between each other, allowing for the transfer of molecules and signals. Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are cellular subdomains characterized by close apposition of mitochondria and ER membranes. They have been implicated in many diseases, including neurodegenerative, metabolic, and cardiac diseases. Although MERCS have been extensively studied, much remains to be explored. To uncover novel regulators of MERCS, we conducted a genome-wide, flow cytometry-based screen using an engineered MERCS reporter cell line. We found 410 genes whose downregulation promotes MERCS and 230 genes whose downregulation decreases MERCS. From these, 29 genes were selected from each population for arrayed screening and 25 were validated from the high population and 13 from the low population. GET4 and BAG6 were highlighted as the top 2 genes that upon suppression increased MERCS from both the pooled and arrayed screens, and these were subjected to further investigation. Multiple microscopy analyses confirmed that loss of GET4 or BAG6 increased MERCS. GET4 and BAG6 were also observed to interact with the known MERCS proteins, inositol 1,4,5-trisphosphate receptors (IP3R) and glucose-regulated protein 75 (GRP75). In addition, we found that loss of GET4 increased mitochondrial calcium uptake upon ER-Ca2+ release and mitochondrial respiration. Finally, we show that loss of GET4 rescues motor ability, improves lifespan and prevents neurodegeneration in a Drosophila model of Alzheimer's disease (Aß42Arc). Together, these results suggest that GET4 is involved in decreasing MERCS and that its loss is neuroprotective.
Assuntos
Sistemas CRISPR-Cas , Membranas Associadas à Mitocôndria , Sistemas CRISPR-Cas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Cálcio/metabolismoRESUMO
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Assuntos
Cálcio , Retículo Endoplasmático , Mitocôndrias , Sinaptotagminas , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Lipídeos , Mitocôndrias/metabolismo , Sinaptotagminas/metabolismoRESUMO
Mutations in fumarate hydratase (FH) cause hereditary leiomyomatosis and renal cell carcinoma1. Loss of FH in the kidney elicits several oncogenic signalling cascades through the accumulation of the oncometabolite fumarate2. However, although the long-term consequences of FH loss have been described, the acute response has not so far been investigated. Here we generated an inducible mouse model to study the chronology of FH loss in the kidney. We show that loss of FH leads to early alterations of mitochondrial morphology and the release of mitochondrial DNA (mtDNA) into the cytosol, where it triggers the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-TANK-binding kinase 1 (TBK1) pathway and stimulates an inflammatory response that is also partially dependent on retinoic-acid-inducible gene I (RIG-I). Mechanistically, we show that this phenotype is mediated by fumarate and occurs selectively through mitochondrial-derived vesicles in a manner that depends on sorting nexin 9 (SNX9). These results reveal that increased levels of intracellular fumarate induce a remodelling of the mitochondrial network and the generation of mitochondrial-derived vesicles, which allows the release of mtDNAin the cytosol and subsequent activation of the innate immune response.
Assuntos
DNA Mitocondrial , Fumaratos , Imunidade Inata , Mitocôndrias , Animais , Camundongos , DNA Mitocondrial/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Rim/enzimologia , Rim/metabolismo , Rim/patologia , Citosol/metabolismoRESUMO
Mitochondria-targeted H2S donors are thought to protect against acute ischemia-reperfusion (IR) injury by releasing H2S that decreases oxidative damage. However, the rate of H2S release by current donors is too slow to be effective upon administration following reperfusion. To overcome this limitation here we develop a mitochondria-targeted agent, MitoPerSulf that very rapidly releases H2S within mitochondria. MitoPerSulf is quickly taken up by mitochondria, where it reacts with endogenous thiols to generate a persulfide intermediate that releases H2S. MitoPerSulf is acutely protective against cardiac IR injury in mice, due to the acute generation of H2S that inhibits respiration at cytochrome c oxidase thereby preventing mitochondrial superoxide production by lowering the membrane potential. Mitochondria-targeted agents that rapidly generate H2S are a new class of therapy for the acute treatment of IR injury.
RESUMO
The architecture of mitochondria adapts to physiological contexts: while mitochondrial fragmentation is usually associated to quality control and cell death, mitochondrial elongation often enhances cell survival during stress. Understanding how these events are regulated is important to elucidate how mitochondrial dynamics control cell fate. Here, we show that the tyrosine kinase Src regulates mitochondrial morphology. Deletion of Src increased mitochondrial size and reduced cellular respiration independently of mitochondrial mass, mitochondrial membrane potential or ATP levels. Re-expression of Src targeted to the mitochondrial matrix, but not of Src targeted to the plasma membrane, rescued mitochondrial morphology in a kinase activity-dependent manner. These findings highlight a novel function for Src in the control of mitochondrial dynamics.
Assuntos
Mitocôndrias , Quinases da Família src , Respiração Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fosforilação , Quinases da Família src/genética , Quinases da Família src/metabolismoRESUMO
Inactivating mutations in SMARCA4 and concurrent epigenetic silencing of SMARCA2 characterize subsets of ovarian and lung cancers. Concomitant loss of these key subunits of SWI/SNF chromatin remodeling complexes in both cancers is associated with chemotherapy resistance and poor prognosis. Here, we discover that SMARCA4/2 loss inhibits chemotherapy-induced apoptosis through disrupting intracellular organelle calcium ion (Ca2+) release in these cancers. By restricting chromatin accessibility to ITPR3, encoding Ca2+ channel IP3R3, SMARCA4/2 deficiency causes reduced IP3R3 expression leading to impaired Ca2+ transfer from the endoplasmic reticulum to mitochondria required for apoptosis induction. Reactivation of SMARCA2 by a histone deacetylase inhibitor rescues IP3R3 expression and enhances cisplatin response in SMARCA4/2-deficient cancer cells both in vitro and in vivo. Our findings elucidate the contribution of SMARCA4/2 to Ca2+-dependent apoptosis induction, which may be exploited to enhance chemotherapy response in SMARCA4/2-deficient cancers.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , DNA Helicases/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Transporte de Íons/genética , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Bcl-2 family proteins are considered as one of the major regulators of apoptosis. Indeed, this family is known to control the mitochondrial outer membrane permeabilization (MOMP): a central step in the mitochondrial pathway of apoptosis. However, in recent years Bcl-2 family members began to emerge as a new class of intracellular calcium (Ca2+) regulators. At mitochondria-ER contacts (MERCs) these proteins are able to interact with major Ca2+ transporters, thus controlling mitochondrial Ca2+ homeostasis and downstream Ca2+ signalling pathways. Beyond the regulation of cell survival, this Bcl-2-dependent control over the mitochondrial Ca2+ dynamics has far-reaching consequences on the physiology of the cell. Here, we review how the Bcl-2 family of proteins mechanistically regulate mitochondrial Ca2+ homeostasis and how this regulation orchestrates cell death/survival decisions as well as the non-apoptotic process of cell migration.
Assuntos
Sinalização do Cálcio , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Morte Celular , Movimento Celular , Retículo Endoplasmático/metabolismo , HumanosRESUMO
Mitochondria are dynamic organelles that undergo cycles of fission and fusion events depending on cellular requirements. During mitochondrial division, the GTPase dynamin-related protein-1 is recruited to endoplasmic reticulum (ER)-induced mitochondrial constriction sites where it drives fission. However, the events required to complete scission of mitochondrial membranes are not well understood. Here, we emphasize the recently described roles for Golgi-derived phosphatidylinositol 4-phosphate (PI4P)-containing vesicles in the last steps of mitochondrial division. We then propose how trans-Golgi network vesicles at mitochondria-ER contact sites and PI4P generation could mechanistically execute mitochondrial division, by recruiting PI4P effectors and/or the actin nucleation machinery. Finally, we speculate on mechanisms to explain why such a complex dance of different organelles is required to facilitate the remodelling of mitochondrial membranes.
Assuntos
Dinaminas , Dinâmica Mitocondrial , Dinaminas/metabolismo , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases , Mitocôndrias , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismoRESUMO
spxB-encoded pyruvate oxidase is a major virulence factor of Streptococcus pneumoniae. During aerobic growth, SpxB synthesizes H2O2 and acetyl phosphate, which play roles in metabolism, signalling, and oxidative stress. We report here the first cis- and trans-acting regulatory elements for spxB transcription. These elements were identified in a genetic screen for spontaneous mutations that caused colonies of strain D39 to change from a semitransparent to an opaque appearance. Six of the seven opaque colonies recovered (frequency approximately 3 x 10(-5)) were impaired for SpxB function or expression. Two mutations changed amino acids in SpxB likely required for cofactor or subunit binding. One mutation defined a cis-acting adjacent direct repeat required for optimal spxB transcription. The other three spontaneous mutations created the same frameshift near the start of the trans-acting spxR regulatory gene. The SpxR protein contains helix-turn-helix, CBS and HotDog domains implicated in binding DNA, adenosyl compounds, and CoA-containing compounds respectively, and suggest that SpxR positively regulates spxB transcription in response to energy and metabolic state. Microarray analyses unexpectedly demonstrated that SpxR also positively regulates the strH exoglycosidase gene, which, like spxB, has been implicated in colonization. Finally, SpxR is required for full virulence in a murine model of infection.