Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 168: 112409, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33957497

RESUMO

Recently, corals on the Great Barrier (GBR) have suffered mass bleaching. The link between ocean warming and coral bleaching is understood to be due to temperature-dependence of complex physiological processes in the coral host and algal symbiont. Here we use a coupled catchment-hydrodynamic-biogeochemical model, with detailed zooxanthellae photophysiology including photoadaptation, photoacclimation and reactive oxygen build-up, to investigate whether natural and anthropogenic catchment loads impact on coral bleaching on the GBR. For the wet season of 2017, simulations show the cross-shelf water quality gradient, driven by both natural and anthropogenic loads, generated a contrasting zooxanthellae physiological state on inshore versus mid-shelf reefs. The relatively small catchment flows and loads delivered during 2017, however, generated small river plumes with limited impact on water quality. Simulations show the removal of the anthropogenic fraction of the catchment loads delivered in 2017 would have had a negligible impact on bleaching rates.


Assuntos
Antozoários , Animais , Recifes de Corais , Nutrientes , Estresse Oxidativo , Qualidade da Água
2.
Science ; 369(6501)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675347

RESUMO

Although reef-building corals are declining worldwide, responses to bleaching vary within and across species and are partly heritable. Toward predicting bleaching response from genomic data, we generated a chromosome-scale genome assembly for the coral Acropora millepora We obtained whole-genome sequences for 237 phenotyped samples collected at 12 reefs along the Great Barrier Reef, among which we inferred little population structure. Scanning the genome for evidence of local adaptation, we detected signatures of long-term balancing selection in the heat-shock co-chaperone sacsin We conducted a genome-wide association study of visual bleaching score for 213 samples, incorporating the polygenic score derived from it into a predictive model for bleaching in the wild. These results set the stage for genomics-based approaches in conservation strategies.


Assuntos
Adaptação Fisiológica/genética , Antozoários/genética , Genoma , Animais , Recifes de Corais , Genética Populacional , Estudo de Associação Genômica Ampla , Genômica
3.
Trends Microbiol ; 27(8): 678-689, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30987816

RESUMO

Coral reefs rely upon the highly optimized coral-Symbiodiniaceae symbiosis, making them sensitive to environmental change and susceptible to anthropogenic stress. Coral bleaching is predominantly attributed to photo-oxidative stress, yet nutrient availability and metabolism underpin the stability of symbioses. Recent studies link symbiont proliferation under nutrient enrichment to bleaching; however, the interactions between nutrients and symbiotic stability are nuanced. Here, we demonstrate how bleaching is regulated by the forms and ratios of available nutrients and their impacts on autotrophic carbon metabolism, rather than algal symbiont growth. By extension, historical nutrient conditions mediate host-symbiont compatibility and bleaching tolerance over proximate and evolutionary timescales. Renewed investigations into the coral nutrient metabolism will be required to truly elucidate the cellular mechanisms leading to coral bleaching.


Assuntos
Antozoários/metabolismo , Dinoflagellida , Simbiose , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Carbono/metabolismo , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/fisiologia , Microbiota , Nutrientes/metabolismo , Fósforo/metabolismo , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA