RESUMO
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
RESUMO
Shifts in microbiome community composition can have large effects on host health. It is therefore important to understand how perturbations, like those caused by the introduction of exogenous chemicals, modulate microbiome community composition. In poison frogs within the family Dendrobatidae, the skin microbiome is exposed to the alkaloids that the frogs sequester from their diet and use for defense. Given the demonstrated antimicrobial effects of these poison frog alkaloids, these compounds may be structuring the skin microbial community. To test this, we first characterized microbial communities from chemically defended and closely related non-defended frogs from Ecuador. Then we conducted a laboratory experiment to monitor the effect of the alkaloid decahydroquinoline (DHQ) on the microbiome of a single frog species. In both the field and lab experiments, we found that alkaloid-exposed microbiomes are more species rich and phylogenetically diverse, with an increase in rare taxa. To better understand the strain-specific behavior in response to alkaloids, we cultured microbial strains from poison frog skin and found the majority of strains exhibited either enhanced growth or were not impacted by the addition of DHQ. Additionally, stable isotope tracing coupled to nanoSIMS suggests that some of these strains are able to metabolize DHQ. Taken together, these data suggest that poison frog chemical defenses open new niches for skin-associated microbes with specific adaptations, including the likely metabolism of alkaloids, that enable their survival in this toxic environment. This work helps expand our understanding of how exposure to exogenous compounds like alkaloids can impact host microbiomes.
RESUMO
Bacterial remineralization of algal organic matter fuels algal growth but is rarely quantified. Consequently, we cannot currently predict whether some bacterial taxa may provide more remineralized nutrients to algae than others. Here, we quantified bacterial incorporation of algal-derived complex dissolved organic carbon and nitrogen and algal incorporation of remineralized carbon and nitrogen in fifteen bacterial co-cultures growing with the diatom Phaeodactylum tricornutum at the single-cell level using isotope tracing and nanoSIMS. We found unexpected strain-to-strain and cell-to-cell variability in net carbon and nitrogen incorporation, including non-ubiquitous complex organic nitrogen utilization and remineralization. We used these data to identify three distinct functional guilds of metabolic interactions, which we termed macromolecule remineralizers, macromolecule users, and small-molecule users, the latter exhibiting efficient growth under low carbon availability. The functional guilds were not linked to phylogeny and could not be elucidated strictly from metabolic capacity as predicted by comparative genomics, highlighting the need for direct activity-based measurements in ecological studies of microbial metabolic interactions.
Assuntos
Diatomáceas , Bactérias/genética , Carbono , Isótopos , NitrogênioRESUMO
The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.
Assuntos
Microbiota , Tubarões , Animais , EpidermeRESUMO
The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.
Assuntos
Antozoários , Microbiota , Animais , Antozoários/microbiologia , Ecossistema , Metagenoma , Recifes de Corais , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , Água do Mar/microbiologiaRESUMO
Outdoor cultivation of microalgae has promising potential for renewable bioenergy, but there is a knowledge gap on the structure and function of the algal microbiome that coinhabits these ecosystems. Here, we describe the assembly mechanisms, taxonomic structure, and metabolic potential of bacteria associated with Microchloropsis salina cultivated outdoors. Open mesocosms were inoculated with algal cultures that were either free of bacteria or coincubated with one of two different strains of alga-associated bacteria and were sampled across five time points taken over multiple harvesting rounds of a 40-day experiment. Using quantitative analyses of metagenome-assembled genomes (MAGs), we tracked bacterial community compositional abundance and taxon-specific functional capacity involved in algal-bacterial interactions. One of the inoculated bacteria (Alteromonas sp.) persisted and dispersed across mesocosms, whereas the other inoculated strain (Phaeobacter gallaeciensis) disappeared by day 17 while a taxonomically similar but functionally distinct Phaeobacter strain became established. The inoculated strains were less abundant than 6 numerically dominant newly recruited taxa with functional capacities for mutualistic or saprophytic lifestyles, suggesting a generalist approach to persistence. This includes a highly abundant unclassified Rhodobacteraceae species that fluctuated between 25% and 77% of the total community. Overall, we did not find evidence for priority effects exerted by the distinct inoculum conditions; all mesocosms converged with similar microbial community compositions by the end of the experiment. Instead, we infer that the 15 total populations were retained due to host selection, as they showed high metabolic potential for algal-bacterial interactions such as recycling alga-produced carbon and nitrogen and production of vitamins and secondary metabolites associated with algal growth and senescence, including B vitamins, tropodithietic acid, and roseobacticides. IMPORTANCE Bacteria proliferate in nutrient-rich aquatic environments, including engineered algal biofuel systems, where they remineralize photosynthates, exchange secondary metabolites with algae, and can influence system output of biomass or oil. Despite this, knowledge on the microbial ecology of algal cultivation systems is lacking, and the subject is worthy of investigation. Here, we used metagenomics to characterize the metabolic capacities of the predominant bacteria associated with the biofuel-relevant microalga Microchloropsis salina and to predict testable metabolic interactions between algae and manipulated communities of bacteria. We identified a previously undescribed and uncultivated organism that dominated the community. Collectively, the microbial community may interact with the alga in cultivation via exchange of secondary metabolites which could affect algal success, which we demonstrate as a possible outcome from controlled experiments with metabolically analogous isolates. These findings address the scalability of lab-based algal-bacterial interactions through to cultivation systems and more broadly provide a framework for empirical testing of genome-based metabolic predictions.
Assuntos
Biocombustíveis , Microbiota , Biomassa , Metagenoma , SimbioseRESUMO
A detailed evaluation of eight bacterial isolates from floral nectar and animal visitors to flowers shows evidence that they represent three novel species in the genus Acinetobacter. Phylogenomic analysis shows the closest relatives of these new isolates are Acinetobacter apis, Acinetobacter boissieri and Acinetobacter nectaris, previously described species associated with floral nectar and bees, but high genome-wide sequence divergence defines these isolates as novel species. Pairwise comparisons of the average nucleotide identity of the new isolates compared to known species is extremely low (<83â%), thus confirming that these samples are representative of three novel Acinetobacter species, for which the names Acinetobacter pollinis sp. nov., Acinetobacter baretiae sp. nov. and Acinetobacter rathckeae sp. nov. are proposed. The respective type strains are SCC477T (=TSD-214T=LMG 31655T), B10AT (=TSD-213T=LMG 31702T) and EC24T (=TSD-215T=LMG 31703T=DSM 111781T).
Assuntos
Acinetobacter/classificação , Abelhas/microbiologia , Filogenia , Néctar de Plantas , Acinetobacter/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , California , DNA Bacteriano/genética , Flores , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
BACKGROUND: The vertebrate clade diverged into Chondrichthyes (sharks, rays, and chimeras) and Osteichthyes fishes (bony fishes) approximately 420 mya, with each group accumulating vast anatomical and physiological differences, including skin properties. The skin of Chondrichthyes fishes is covered in dermal denticles, whereas Osteichthyes fishes are covered in scales and are mucous rich. The divergence time among these two fish groups is hypothesized to result in predictable variation among symbionts. Here, using shotgun metagenomics, we test if patterns of diversity in the skin surface microbiome across the two fish clades match predictions made by phylosymbiosis theory. We hypothesize (1) the skin microbiome will be host and clade-specific, (2) evolutionary difference in elasmobranch and teleost will correspond with a concomitant increase in host-microbiome dissimilarity, and (3) the skin structure of the two groups will affect the taxonomic and functional composition of the microbiomes. RESULTS: We show that the taxonomic and functional composition of the microbiomes is host-specific. Teleost fish had lower average microbiome within clade similarity compared to among clade comparison, but their composition is not different among clade in a null based model. Elasmobranch's average similarity within clade was not different than across clade and not different in a null based model of comparison. In the comparison of host distance with microbiome distance, we found that the taxonomic composition of the microbiome was related to host distance for the elasmobranchs, but not the teleost fishes. In comparison, the gene function composition was not related to the host-organism distance for elasmobranchs but was negatively correlated with host distance for teleost fishes. CONCLUSION: Our results show the patterns of phylosymbiosis are not consistent across both fish clades, with the elasmobranchs showing phylosymbiosis, while the teleost fish are not. The discrepancy may be linked to alternative processes underpinning microbiome assemblage, including possible historical host-microbiome evolution of the elasmobranchs and convergent evolution in the teleost which filter specific microbial groups. Our comparison of the microbiomes among fishes represents an investigation into the microbial relationships of the oldest divergence of extant vertebrate hosts and reveals that microbial relationships are not consistent across evolutionary timescales. Video abstract.
Assuntos
Elasmobrânquios/microbiologia , Peixes/microbiologia , Tegumento Comum/microbiologia , Metagenômica , Microbiota/genética , Filogenia , Simbiose , Animais , Bactérias/genética , Bactérias/isolamento & purificaçãoRESUMO
Host-associated microbial communities are shaped by extrinsic and intrinsic factors to the holobiont organism. Environmental factors and microbe-microbe interactions act simultaneously on the microbial community structure, making the microbiome dynamics challenging to predict. The coral microbiome is essential to the health of coral reefs and sensitive to environmental changes. Here, we develop a dynamic model to determine the microbial community structure associated with the surface mucus layer (SML) of corals using temperature as an extrinsic factor and microbial network as an intrinsic factor. The model was validated by comparing the predicted relative abundances of microbial taxa to the relative abundances of microbial taxa from the sample data. The SML microbiome from Pseudodiploria strigosa was collected across reef zones in Bermuda, where inner and outer reefs are exposed to distinct thermal profiles. A shotgun metagenomics approach was used to describe the taxonomic composition and the microbial network of the coral SML microbiome. By simulating the annual temperature fluctuations at each reef zone, the model output is statistically identical to the observed data. The model was further applied to six scenarios that combined different profiles of temperature and microbial network to investigate the influence of each of these two factors on the model accuracy. The SML microbiome was best predicted by model scenarios with the temperature profile that was closest to the local thermal environment, regardless of the microbial network profile. Our model shows that the SML microbiome of P. strigosa in Bermuda is primarily structured by seasonal fluctuations in temperature at a reef scale, while the microbial network is a secondary driver.IMPORTANCE Coral microbiome dysbiosis (i.e., shifts in the microbial community structure or complete loss of microbial symbionts) caused by environmental changes is a key player in the decline of coral health worldwide. Multiple factors in the water column and the surrounding biological community influence the dynamics of the coral microbiome. However, by including only temperature as an external factor, our model proved to be successful in describing the microbial community associated with the surface mucus layer (SML) of the coral P. strigosa The dynamic model developed and validated in this study is a potential tool to predict the coral microbiome under different temperature conditions.
Assuntos
Antozoários/microbiologia , Microbiota , Modelos Teóricos , Temperatura , Animais , Bermudas , Metagenômica , Interações Microbianas , Muco/microbiologiaRESUMO
Microbial dispersal is essential for establishment in new habitats, but the role of vector identity is poorly understood in community assembly and function. Here, we compared microbial assembly and function in floral nectar visited by legitimate pollinators (hummingbirds) and nectar robbers (carpenter bees). We assessed effects of visitation on the abundance and composition of culturable bacteria and fungi and their taxonomy and function using shotgun metagenomics and nectar chemistry. We also compared metagenome-assembled genomes (MAGs) of Acinetobacter, a common and highly abundant nectar bacterium, among visitor treatments. Visitation increased microbial abundance, but robbing resulted in 10× higher microbial abundance than pollination. Microbial communities differed among visitor treatments: robbed flowers were characterized by predominant nectar specialists within Acetobacteraceae and Metschnikowiaceae, with a concurrent loss of rare taxa, and these resulting communities harbored genes relating to osmotic stress, saccharide metabolism and specialized transporters. Gene differences were mirrored in function: robbed nectar contained a higher percentage of monosaccharides. Draft genomes of Acinetobacter revealed distinct amino acid and saccharide utilization pathways in strains isolated from robbed versus pollinated flowers. Our results suggest an unrecognized cost of nectar robbing for pollination and distinct effects of visitor type on interactions between plants and pollinators. Overall, these results suggest vector identity is an underappreciated factor structuring microbial community assembly and function.
Assuntos
Microbiota , Néctar de Plantas , Animais , Abelhas , Aves , Flores , PolinizaçãoRESUMO
Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 'future conditions', with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.
Assuntos
Dióxido de Carbono/análise , Temperatura Alta , Kelp/microbiologia , Macrocystis/microbiologia , Microbiota , Água do Mar/microbiologia , Microbiologia da Água , Mudança Climática , Kelp/crescimento & desenvolvimentoRESUMO
BACKGROUND: Microbiome/host interactions describe characteristics that affect the host's health. Shotgun metagenomics includes sequencing a random subset of the microbiome to analyze its taxonomic and metabolic potential. Reconstruction of DNA fragments into genomes from metagenomes (called metagenome-assembled genomes) assigns unknown fragments to taxa/function and facilitates discovery of novel organisms. Genome reconstruction incorporates sequence assembly and sorting of assembled sequences into bins, characteristic of a genome. However, the microbial community composition, including taxonomic and phylogenetic diversity may influence genome reconstruction. We determine the optimal reconstruction method for four microbiome projects that had variable sequencing platforms (IonTorrent and Illumina), diversity (high or low), and environment (coral reefs and kelp forests), using a set of parameters to select for optimal assembly and binning tools. METHODS: We tested the effects of the assembly and binning processes on population genome reconstruction using 105 marine metagenomes from 4 projects. Reconstructed genomes were obtained from each project using 3 assemblers (IDBA, MetaVelvet, and SPAdes) and 2 binning tools (GroopM and MetaBat). We assessed the efficiency of assemblers using statistics that including contig continuity and contig chimerism and the effectiveness of binning tools using genome completeness and taxonomic identification. RESULTS: We concluded that SPAdes, assembled more contigs (143,718 ± 124 contigs) of longer length (N50 = 1632 ± 108 bp), and incorporated the most sequences (sequences-assembled = 19.65%). The microbial richness and evenness were maintained across the assembly, suggesting low contig chimeras. SPAdes assembly was responsive to the biological and technological variations within the project, compared with other assemblers. Among binning tools, we conclude that MetaBat produced bins with less variation in GC content (average standard deviation: 1.49), low species richness (4.91 ± 0.66), and higher genome completeness (40.92 ± 1.75) across all projects. MetaBat extracted 115 bins from the 4 projects of which 66 bins were identified as reconstructed metagenome-assembled genomes with sequences belonging to a specific genus. We identified 13 novel genomes, some of which were 100% complete, but show low similarity to genomes within databases. CONCLUSIONS: In conclusion, we present a set of biologically relevant parameters for evaluation to select for optimal assembly and binning tools. For the tools we tested, SPAdes assembler and MetaBat binning tools reconstructed quality metagenome-assembled genomes for the four projects. We also conclude that metagenomes from microbial communities that have high coverage of phylogenetically distinct, and low taxonomic diversity results in highest quality metagenome-assembled genomes.
Assuntos
Genoma Microbiano , Metagenoma , Análise de Sequência de DNA/métodos , Algoritmos , Filogenia , Análise de Sequência de DNA/normas , SoftwareRESUMO
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.
RESUMO
Marine microbes mediate key ecological processes in kelp forest ecosystems and interact with macroalgae. Pelagic and biofilm-associated microbes interact with macroalgal propagules at multiple stages of recruitment, yet these interactions have not been described for Macrocystis pyrifera. Here we investigate the influence of microbes from coastal environments on recruitment of giant kelp, M. pyrifera. Through repeated laboratory experiments, we tested the effects of altered pelagic microbial abundance on the settlement and development of the microscopic propagules of M. pyrifera during recruitment. M. pyrifera zoospores were reared in laboratory microcosms exposed to environmental microbial communities from seawater during the complete haploid stages of the kelp recruitment cycle, including zoospore release, followed by zoospore settlement, to gametophyte germination and development. We altered the microbial abundance states differentially in three independent experiments with repeated trials, where microbes were (a) present or absent in seawater, (b) altered in community composition, and (c) altered in abundance. Within the third experiment, we also tested the effect of nearshore versus offshore microbial communities on the macroalgal propagules. Distinct pelagic microbial communities were collected from two southern California temperate environments reflecting contrasting intensity of human influence, the nearshore Point Loma kelp forest and the offshore Santa Catalina Island kelp forest. The Point Loma kelp forest is a high impacted coastal region adjacent to the populous San Diego Bay; whereas the kelp forest at Catalina Island is a low impacted region of the Channel Islands, 40 km offshore the southern California coast, and is adjacent to a marine protected area. Kelp gametophytes reared with nearshore Point Loma microbes showed lower survival, growth, and deteriorated morphology compared to gametophytes with the offshore Catalina Island microbial community, and these effects were magnified under high microbial abundances. Reducing abundance of Point Loma microbes restored M. pyrifera propagule success. Yet an intermediate microbial abundance was optimal for kelp propagules reared with Catalina Island microbes, suggesting that microbes also have a beneficial influence on kelp. Our study shows that pelagic microbes from nearshore and offshore environments are differentially influencing kelp propagule success, which has significant implications for kelp recruitment and kelp forest ecosystem health.
Assuntos
Aspirina/uso terapêutico , Tomada de Decisões , Técnicas de Apoio para a Decisão , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Participação do Paciente/métodos , Adulto , Idoso , Aspirina/administração & dosagem , Comportamento de Escolha , Registros Eletrônicos de Saúde , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores SocioeconômicosRESUMO
A small percentage of human immunodeficiency virus (HIV)-infected individuals, termed elite controllers, are able to spontaneously control HIV replication in blood. As the gastrointestinal mucosa is an important site of HIV transmission and replication as well as CD4+ T-cell depletion, it is important to understand the nature of the immune responses occurring in this compartment. Although the role of the HIV-specific CD8+ T-cell responses in mucosal tissues has been described, few studies have investigated the role of mucosal HIV-specific CD4+ T cells. In this study, we assessed HIV-specific CD4+ T-cell responses in the rectal mucosa of 28 "controllers" (viral load [VL] of <2,000 copies/ml), 14 "noncontrollers" (VL of >10,000 copies/ml), and 10 individuals on highly active antiretroviral therapy (HAART) (VL of <75 copies/ml). Controllers had higher-magnitude Gag-specific mucosal CD4+ T-cell responses than individuals on HAART (P<0.05), as measured by their ability to produce gamma interferon (IFN-γ), interleukin-2 (IL-2), tumor necrosis factor alpha (TNF-α), and macrophage inflammatory protein 1ß (MIP-1ß). The frequency of polyfunctional mucosal CD4+ T cells was also higher in controllers than in noncontrollers or individuals on HAART (P<0.05). Controllers with the strongest HIV-specific CD4+ T-cell responses possessed class II HLA alleles, HLA-DRB1*13 and/or HLA-DQB1*06, previously associated with a nonprogression phenotype. Strikingly, individuals with both HLA-DRB1*13 and HLA-DQB1*06 had highly polyfunctional mucosal CD4+ T cells compared to individuals with HLA-DQB1*06 alone or other class II alleles. The frequency of polyfunctional CD4+ T cells in rectal mucosa positively correlated with the magnitude of the mucosal CD8+ T-cell response (Spearman's r=0.43, P=0.005), suggesting that increased CD4+ T-cell "help" may be important in maintaining strong CD8+ T-cell responses in the gut of HIV controllers.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Sobreviventes de Longo Prazo ao HIV , HIV/imunologia , Antígenos HLA-DQ/imunologia , Mucosa Intestinal/imunologia , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citocinas/biossíntese , Produtos do Gene gag/imunologia , Cadeias beta de HLA-DQ , Antígenos HLA-DR , Cadeias HLA-DRB1 , Mucosa Intestinal/virologia , FenótipoRESUMO
Previous studies have suggested that polyfunctional mucosal CD8(+) T-cell responses may be a correlate of protection in HIV controllers. Mucosal T-cell breadth and/or specificity may also contribute to defining protective responses. In this study, rectal CD8(+) T-cell responses to HIV Gag, Env, and Nef were mapped at the peptide level in four subject groups: elite controllers (n = 16; viral load [VL], <75 copies/ml), viremic controllers (n = 14; VL, 75 to 2,000 copies/ml), noncontrollers (n = 14; VL, >10,000 copies/ml), and antiretroviral-drug-treated subjects (n = 8; VL, <75 copies/ml). In all subject groups, immunodominant CD8(+) T-cell responses were generally shared by blood and mucosa, although there were exceptions. In HIV controllers, responses to HLA-B27- and HLA-B57-restricted epitopes were common to both tissues, and their magnitude (in spot-forming cells [SFC] per million) was significantly greater than those of responses restricted by other alleles. Furthermore, peptides recognized by T cells in both blood and rectal mucosa, termed "concordant," elicited higher median numbers of SFC than discordant responses. In magnitude as well as breadth, HIV Gag-specific responses, particularly those targeting p24 and p7, dominated in controllers. Responses in noncontrollers were more evenly distributed among epitopes in Gag, Env, and Nef. Viremic controllers showed significantly broader mucosal Gag-specific responses than other groups. Taken together, these findings demonstrate that (i) Gag-specific responses dominate in mucosal tissues of HIV controllers; (ii) there is extensive overlap between CD8(+) T cells in blood and mucosal tissues, with responses to immunodominant epitopes generally shared by both sites; and (iii) mucosal T-cell response breadth alone cannot account for immune control.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Sobreviventes de Longo Prazo ao HIV , HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Terapia Antirretroviral de Alta Atividade , Feminino , Antígenos HIV , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Antígenos HLA-B , Antígeno HLA-B27 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade nas Mucosas , Epitopos Imunodominantes , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Reto/imunologia , Reto/virologia , Carga Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologiaRESUMO
There exists a unique group of persons who are able to durably control HIV in the absence of therapy. The mechanisms of control in these persons remain poorly defined. In this study, we examined CD8(+) T-cell responses in blood and rectal mucosa from 17 "elite controllers" (viral load < 75 copies/mL), 11 "viremic controllers" (75-2000 copies/mL), 14 noncontrollers (> 10,000 copies/mL), and 10 antiretroviral-treated persons (< 75 copies/mL). Production of interferon-gamma, interleukin-2, tumor necrosis factor-alpha, macrophage inflammatory protein-1 beta, and CD107a by CD8(+) T cells in response to HIV-1 Gag stimulation was measured using flow cytometry. Our hypothesis was that "polyfunctional" T cells producing multiple antiviral factors would be most abundant in mucosal tissues of HIV controllers. Mucosal CD8(+) T-cell responses were significantly stronger and more complex in controllers than in antiretroviral-suppressed persons (P = .0004). The frequency of 4-function responses in rectal mucosa was higher in controllers than in noncontrollers and patients on therapy (P < .0001). Mucosal responses in controllers were frequently stronger and more complex than blood responses. These findings demonstrate that many controllers mount strong, complex HIV-specific T-cell responses in rectal mucosa. These responses may play an important role in mucosal immune surveillance, as suggested by their relative enrichment among persons who control HIV in the absence of therapy.