Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genesis ; 48(1): 3-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19882738

RESUMO

In Drosophila, the Gal4-UAS system is used to drive ectopic gene expression in a tissue-specific manner. In this system, transgenic flies expressing tissue specific Gal4 are crossed to a line in which the gene to be expressed is under the control of a Gal4-responsive UAS sequence. The resulting progeny express the gene of interest in the pattern of the particular Gal4 line. Since a given UAS-transgene can be driven by any Gal4 line, this system is predominantly limited by available Gal4 lines. Here we report the characterization of a novel line, DE-Gal4, which in the eye is expressed in the dorsal compartment for the majority of development. Furthermore, we use functional tests to show that the DE-Gal4 line is a useful tool with which to manipulate gene expression in half of the developing eye.


Assuntos
Proteínas de Ligação a DNA/genética , Drosophila/genética , Olho/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Olho/embriologia , Olho/crescimento & desenvolvimento , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Óperon Lac/genética , Larva/genética , Masculino , Interferência de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transgenes/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
2.
BMC Genomics ; 9: 345, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18647405

RESUMO

BACKGROUND: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. RESULTS: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. CONCLUSION: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.


Assuntos
Borboletas/genética , Ordem dos Genes , Genes de Insetos , Ligação Genética , Sequências Repetitivas de Ácido Nucleico , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Sequência de Bases , Passeio de Cromossomo , Cromossomos Artificiais Bacterianos , Sequência Conservada , DNA/genética , Marcadores Genéticos , Fenótipo , Pigmentação/genética , Análise de Sequência , Sintenia , Asas de Animais
3.
Curr Biol ; 16(19): 1895-904, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16949821

RESUMO

BACKGROUND: The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Hippo signaling restricts tissue size by promoting apoptosis and cell-cycle arrest, and animals carrying clones of cells mutant for hippo develop severely overgrown adult structures. The Hippo pathway is thought to exert its effects by modulating gene expression through the phosphorylation of the transcriptional coactivator Yorkie. However, how Yorkie regulates growth, and thus the identities of downstream target genes that mediate the effects of Hippo signaling, are largely unknown. RESULTS: Here, we report that the bantam microRNA is a downstream target of the Hippo signaling pathway. In common with Hippo signaling, the bantam microRNA controls tissue size by regulating cell proliferation and apoptosis. We found that hippo mutant cells had elevated levels of bantam activity and that bantam was required for Yorkie-driven overgrowth. Additionally, overexpression of bantam was sufficient to rescue growth defects of yorkie mutant cells and to suppress the cell death induced by Hippo hyperactivation. Hippo regulates bantam independently of cyclin E and diap1, two other Hippo targets, and overexpression of bantam mimics overgrowth phenotypes of hippo mutant cells. CONCLUSIONS: Our data indicate that bantam is an essential target of the Hippo signaling pathway to regulate cell proliferation, cell death, and thus tissue size.


Assuntos
Ciclinas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Apoptose , Proliferação de Células , Ciclina E/genética , Ciclina E/metabolismo , Ciclinas/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Retina/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
4.
Dev Biol ; 261(1): 251-67, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12941633

RESUMO

Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.


Assuntos
Endotélio Vascular/embriologia , Receptores Imunológicos/fisiologia , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/fisiologia , Receptores de Activinas Tipo II , Sequência de Aminoácidos , Animais , Linhagem Celular , Movimento Celular , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Peixe-Zebra , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA