Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Microsyst Nanoeng ; 9: 27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949734

RESUMO

Silicon photonics has emerged as a mature technology that is expected to play a key role in critical emerging applications, including very high data rate optical communications, distance sensing for autonomous vehicles, photonic-accelerated computing, and quantum information processing. The success of silicon photonics has been enabled by the unique combination of performance, high yield, and high-volume capacity that can only be achieved by standardizing manufacturing technology. Today, standardized silicon photonics technology platforms implemented by foundries provide access to optimized library components, including low-loss optical routing, fast modulation, continuous tuning, high-speed germanium photodiodes, and high-efficiency optical and electrical interfaces. However, silicon's relatively weak electro-optic effects result in modulators with a significant footprint and thermo-optic tuning devices that require high power consumption, which are substantial impediments for very large-scale integration in silicon photonics. Microelectromechanical systems (MEMS) technology can enhance silicon photonics with building blocks that are compact, low-loss, broadband, fast and require very low power consumption. Here, we introduce a silicon photonic MEMS platform consisting of high-performance nano-opto-electromechanical devices fully integrated alongside standard silicon photonics foundry components, with wafer-level sealing for long-term reliability, flip-chip bonding to redistribution interposers, and fibre-array attachment for high port count optical and electrical interfacing. Our experimental demonstration of fundamental silicon photonic MEMS circuit elements, including power couplers, phase shifters and wavelength-division multiplexing devices using standardized technology lifts previous impediments to enable scaling to very large photonic integrated circuits for applications in telecommunications, neuromorphic computing, sensing, programmable photonics, and quantum computing.

3.
Biomed Opt Express ; 11(7): 3913-3926, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33014575

RESUMO

Pulse wave velocity (PWV) is a reference measure for aortic stiffness, itself an important biomarker of cardiovascular risk. To enable low-cost and easy-to-use PWV measurement devices that can be used in routine clinical practice, we have designed several handheld PWV sensors using miniaturized laser Doppler vibrometer (LDV) arrays in a silicon photonics platform. The LDV-based PWV sensor design and the signal processing protocol to obtain pulse transit time (PTT) and carotid-femoral PWV in a feasibility study in humans, are described in this paper. Compared with a commercial reference PWV measurement system, measuring arterial pressure waveforms by applanation tonometry, LDV-based displacement signals resulted in more complex signals. However, we have shown that it is possible to identify reliable fiducial points for PTT calculation using the maximum of the 2nd derivative algorithm in LDV-based signals, comparable to those obtained by the reference technique, applanation tonometry.

4.
Opt Express ; 24(6): 5846-54, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136781

RESUMO

A 1x2 multi-mode-interferometer (MMI) laser diode was successfully designed and fabricated, which demonstrated three coherent outputs of tunable single frequency emission with more than 30dB side mode suppression ratio (SMSR), a tuning range of 25nm in C and L band, as well as 750 kHz linewidth. This 1x2 MMI laser could be expanded to more advanced configurations such as 1xN or MxN (M≥1, N>2) MMI lasers to achieve a multiple coherent output source. In addition, these lasers do not require material regrowth and high resolution gratings which can significantly increase the yield and reduce the cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA