Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Oncoimmunology ; 13(1): 2349347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746870

RESUMO

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Assuntos
Carcinoma Epitelial do Ovário , Imunidade Inata , Linfócitos do Interstício Tumoral , Melanoma , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Melanoma/imunologia , Melanoma/patologia , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/patologia , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral/imunologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/patologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/metabolismo , Proteína do Gene 3 de Ativação de Linfócitos , Antígenos CD/metabolismo
3.
Nucleic Acids Res ; 52(12): e53, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38813827

RESUMO

Advances in molecular profiling have facilitated generation of large multi-modal datasets that can potentially reveal critical axes of biological variation underlying complex diseases. Distilling biological meaning, however, requires computational strategies that can perform mosaic integration across diverse cohorts and datatypes. Here, we present mosaicMPI, a framework for discovery of low to high-resolution molecular programs representing both cell types and states, and integration within and across datasets into a network representing biological themes. Using existing datasets in glioblastoma, we demonstrate that this approach robustly integrates single cell and bulk programs across multiple platforms. Clinical and molecular annotations from cohorts are statistically propagated onto this network of programs, yielding a richly characterized landscape of biological themes. This enables deep understanding of individual tumor samples, systematic exploration of relationships between modalities, and generation of a reference map onto which new datasets can rapidly be mapped. mosaicMPI is available at https://github.com/MorrissyLab/mosaicMPI.


Assuntos
Glioblastoma , Software , Humanos , Glioblastoma/genética , Genômica/métodos , Análise de Célula Única/métodos , Biologia Computacional/métodos
4.
J Proteome Res ; 22(9): 3054-3067, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595185

RESUMO

Multiple methods for quantitative proteomics are available for proteome profiling. It is unclear which methods are most useful in situations involving deep proteome profiling and the detection of subtle distortions in the proteome. Here, we compared the performance of seven different strategies in the analysis of a mouse model of Fragile X Syndrome, involving the knockout of the fmr1 gene that is the leading cause of autism spectrum disorder. Focusing on the cerebellum, we show that data-independent acquisition (DIA) and the tandem mass tag (TMT)-based real-time search method (RTS) generated the most informative profiles, generating 334 and 329 significantly altered proteins, respectively, although the latter still suffered from ratio compression. Label-free methods such as BoxCar and a conventional data-dependent acquisition were too noisy to generate a reliable profile, while TMT methods that do not invoke RTS showed a suppressed dynamic range. The TMT method using the TMTpro reagents together with complementary ion quantification (ProC) overcomes ratio compression, but current limitations in ion detection reduce sensitivity. Overall, both DIA and RTS uncovered known regulators of the syndrome and detected alterations in calcium signaling pathways that are consistent with calcium deregulation recently observed in imaging studies. Data are available via ProteomeXchange with the identifier PXD039885.

5.
Acta Neuropathol ; 144(6): 1127-1142, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178522

RESUMO

Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Neoplasias Encefálicas/genética , Proteômica , Recidiva Local de Neoplasia/genética , Transcriptoma
7.
Sci Adv ; 7(42): eabg6045, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644115

RESUMO

Single-cell epigenomic assays have tremendous potential to illuminate mechanisms of transcriptional control in functionally diverse cancer cell populations. However, application of these techniques to clinical tumor specimens has been hampered by the current inability to distinguish malignant from nonmalignant cells, which potently confounds data analysis and interpretation. Here, we describe Copy-scAT, an R package that uses single-cell epigenomic data to infer copy number variants (CNVs) that define cancer cells. Copy-scAT enables studies of subclonal chromatin dynamics in complex tumors like glioblastoma. By deploying Copy-scAT, we uncovered potent influences of genetics on chromatin accessibility profiles in individual subclones. Consequently, some genetic subclones were predisposed to acquire stem-like or more differentiated molecular phenotypes, reminiscent of developmental paradigms. Copy-scAT is ideal for studies of the relationships between genetics and epigenetics in malignancies with high levels of intratumoral heterogeneity and to investigate how cancer cells interface with their microenvironment.

8.
Genes Chromosomes Cancer ; 60(8): 531-545, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749950

RESUMO

Advanced cancers frequently show histologic and molecular intratumoral heterogeneity. Therefore, we comprehensively characterized advanced, metastatic, radioiodine-resistant (RAIR) thyroid carcinomas at the molecular level in the context of histologic heterogeneity with the aim to identify potentially actionable mutations that may guide the use of specific tyrosine kinase inhibitor (TKI) treatment. Whole exome sequencing (WES) was applied to 29 macrodissected tissue samples of histologically heterogeneous and homogeneous areas, lymph node and lung metastases from six clinically and histologically well-characterized metastatic RAIR thyroid cancer patients with structural incomplete response to treatment. WES data were analyzed to identify potential driver mutations in oncogenic pathways, copy number alterations, microsatellite instability, mutant-allele tumor heterogeneity, and the relevance of histologic heterogeneity to molecular profiling. In addition to known driver mutations in BRAF, NRAS, EIF1AX, NCOA4-RET, and TERT, further potentially actionable drivers were identified in AKT1, ATM, E2F1, HTR2A, and MLH3. The analysis of the evolutionary history of the mutations and the reconstruction of the molecular phylogeny of the cancers show a remarkable association between histologic and molecular heterogeneity. A comprehensive molecular analysis of the primary tumor guided by histologic analysis may help to better stratify patients for precision medicine approaches. Given the association between the molecular and the histologic heterogeneity, the selection of tumor samples for molecular analysis should be based on meticulous histologic evaluation of the entire tumor.


Assuntos
Mutação , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Antineoplásicos/uso terapêutico , Feminino , Heterogeneidade Genética , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Sequenciamento do Exoma/métodos
9.
Genomics Proteomics Bioinformatics ; 19(2): 172-190, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581341

RESUMO

How distinct transcriptional programs are enacted to generate cellular heterogeneity and plasticity, and enable complex fate decisions are important open questions. One key regulator is the cell's epigenome state that drives distinct transcriptional programs by regulating chromatin accessibility. Genome-wide chromatin accessibility measurements can impart insights into regulatory sequences (in)accessible to DNA-binding proteins at a single-cell resolution. This review outlines molecular methods and bioinformatic tools for capturing cell-to-cell chromatin variation using single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) in a scalable fashion. It also covers joint profiling of chromatin with transcriptome/proteome measurements, computational strategies to integrate multi-omic measurements, and predictive bioinformatic tools to infer chromatin accessibility from single-cell transcriptomic datasets. Methodological refinements that increase power for cell discovery through robust chromatin coverage and integrate measurements from multiple modalities will further expand our understanding of gene regulation during homeostasis and disease.


Assuntos
Cromatina , Transposases , Cromatina/genética , Biologia Computacional , Genoma , Análise de Célula Única , Transcriptoma , Transposases/química , Transposases/genética , Transposases/metabolismo
10.
Nat Neurosci ; 23(7): 842-853, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424282

RESUMO

Many immunotherapies act by enhancing the ability of cytotoxic T cells to kill tumor cells. Killing depends on T cell recognition of antigens presented by class I major histocompatibility complex (MHC-I) proteins on tumor cells. In this study, we showed that medulloblastomas lacking the p53 tumor suppressor do not express surface MHC-I and are therefore resistant to immune rejection. Mechanistically, this is because p53 regulates expression of the peptide transporter Tap1 and the aminopeptidase Erap1, which are required for MHC-I trafficking to the cell surface. In vitro, tumor necrosis factor (TNF) or lymphotoxin-ß receptor agonist can rescue expression of Erap1, Tap1 and MHC-I on p53-mutant tumor cells. In vivo, low doses of TNF prolong survival and synergize with immune checkpoint inhibitors to promote tumor rejection. These studies identified p53 as a key regulator of immune evasion and suggest that TNF could be used to enhance sensitivity of tumors to immunotherapy.


Assuntos
Neoplasias Cerebelares/imunologia , Meduloblastoma/imunologia , Evasão Tumoral/imunologia , Fator de Necrose Tumoral alfa/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
12.
Genome Res ; 29(8): 1211-1222, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31249064

RESUMO

We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276 We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.


Assuntos
Neoplasias Encefálicas/genética , Cromatina/ultraestrutura , Mapeamento Cromossômico/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Proteínas de Neoplasias/genética , Antígenos B7/antagonistas & inibidores , Antígenos B7/genética , Antígenos B7/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Cromatina/química , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Genômica/métodos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcrição Gênica
13.
Oncogene ; 38(10): 1702-1716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30348991

RESUMO

Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor, representing 20% of newly diagnosed childhood central nervous system malignancies. Although advances in multimodal therapy yielded a 5-year survivorship of 80%, MB still accounts for the leading cause of childhood cancer mortality. In this work, we describe the epigenetic regulator BMI1 as a novel therapeutic target for the treatment of recurrent human Group 3 MB, a childhood brain tumor for which there is virtually no treatment option beyond palliation. Current clinical trials for recurrent MB patients based on genomic profiles of primary, treatment-naive tumors will provide limited clinical benefit since recurrent metastatic MBs are highly genetically divergent from their primary tumor. Using a small molecule inhibitor against BMI1, PTC-028, we were able to demonstrate complete ablation of self-renewal of MB stem cells in vitro. When administered to mice xenografted with patient tumors, we observed significant reduction in tumor burden in both local and metastatic compartments and subsequent increased survival, without neurotoxicity. Strikingly, serial in vivo re-transplantation assays demonstrated a marked reduction in tumor initiation ability of recurrent MB cells upon re-transplantation of PTC-028-treated cells into secondary recipient mouse brains. As Group 3 MB is often metastatic and uniformly fatal at recurrence, with no current or planned trials of targeted therapy, an efficacious targeted agent would be rapidly transitioned to clinical trials.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Complexo Repressor Polycomb 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Criança , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cancer Res ; 17(1): 186-198, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224541

RESUMO

Medulloblastomas, the most common malignant pediatric brain tumors, have been genetically defined into four subclasses, namely WNT-activated, Sonic Hedgehog (SHH)-activated, Group 3, and Group 4. Approximately 30% of medulloblastomas have aberrant SHH signaling and thus are referred to as SHH-activated medulloblastoma. The tumor suppressor gene TP53 has been recently recognized as a prognostic marker for patients with SHH-activated medulloblastoma; patients with mutant TP53 have a significantly worse outcome than those with wild-type TP53. It remains unknown whether p53 activity is impaired in SHH-activated, wild-type TP53 medulloblastoma, which is about 80% of the SHH-activated medulloblastomas. Utilizing the homozygous NeuroD2:SmoA1 mouse model with wild-type Trp53, which recapitulates human SHH-activated medulloblastoma, it was discovered that the endogenous Inhibitor 2 of Protein Phosphatase 2A (SET/I2PP2A) suppresses p53 function by promoting accumulation of phospho-MDM2 (S166), an active form of MDM2 that negatively regulates p53. Knockdown of I2PP2A in SmoA1 primary medulloblastoma cells reduced viability and proliferation in a p53-dependent manner, indicating the oncogenic role of I2PP2A. Importantly, this mechanism is conserved in the human medulloblastoma cell line ONS76 with wild-type TP53. Taken together, these findings indicate that p53 activity is inhibited by I2PP2A upstream of PP2A in SHH-activated and TP53-wildtype medulloblastomas. IMPLICATIONS: This study suggests that I2PP2A represents a novel therapeutic option and its targeting could improve the effectiveness of current therapeutic regimens for SHH-activated or other subclasses of medulloblastoma with wild-type TP53.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Hedgehog/metabolismo , Chaperonas de Histonas/metabolismo , Meduloblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adulto , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Peptídeos/farmacologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima
15.
Dev Cell ; 48(2): 167-183.e5, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30554998

RESUMO

SUFU alterations are common in human Sonic Hedgehog (SHH) subgroup medulloblastoma (MB). However, its tumorigenic mechanisms have remained elusive. Here, we report that loss of Sufu alone is unable to induce MB formation in mice, due to insufficient Gli2 activation. Simultaneous loss of Spop, an E3 ubiquitin ligase targeting Gli2, restores robust Gli2 activation and induces rapid MB formation in Sufu knockout background. We also demonstrated a tumor-promoting role of Sufu in Smo-activated MB (∼60% of human SHH MB) by maintaining robust Gli activity. Having established Gli2 activation as a key driver of SHH MB, we report a comprehensive analysis of its targetome. Furthermore, we identified Atoh1 as a target and molecular accomplice of Gli2 that activates core SHH MB signature genes in a synergistic manner. Overall, our work establishes the dual role of SUFU in SHH MB and provides mechanistic insights into transcriptional regulation underlying Gli2-mediated SHH MB tumorigenesis.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína Gli2 com Dedos de Zinco/genética , Animais , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Camundongos
16.
Dev Cell ; 44(6): 709-724.e6, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29551561

RESUMO

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.


Assuntos
Acetiltransferases/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/fisiologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Mutação , Síndrome de Rubinstein-Taybi/patologia , Adulto , Animais , Proteína de Ligação a CREB/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Camundongos Knockout , Neurônios , Fenótipo , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/metabolismo , Transdução de Sinais
17.
Cancer Cell ; 32(3): 295-309.e12, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898695

RESUMO

We developed an RNA-sequencing-based pipeline to discover differentially expressed cell-surface molecules in neuroblastoma that meet criteria for optimal immunotherapeutic target safety and efficacy. Here, we show that GPC2 is a strong candidate immunotherapeutic target in this childhood cancer. We demonstrate high GPC2 expression in neuroblastoma due to MYCN transcriptional activation and/or somatic gain of the GPC2 locus. We confirm GPC2 to be highly expressed on most neuroblastomas, but not detectable at appreciable levels in normal childhood tissues. In addition, we demonstrate that GPC2 is required for neuroblastoma proliferation. Finally, we develop a GPC2-directed antibody-drug conjugate that is potently cytotoxic to GPC2-expressing neuroblastoma cells. Collectively, these findings validate GPC2 as a non-mutated neuroblastoma oncoprotein and candidate immunotherapeutic target.


Assuntos
Glipicanas/metabolismo , Imunoterapia , Terapia de Alvo Molecular , Neuroblastoma/imunologia , Neuroblastoma/terapia , Proteínas Oncogênicas/metabolismo , Animais , Anticorpos Antineoplásicos/metabolismo , Morte Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Criança , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco
18.
Ecancermedicalscience ; 10: 630, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110286

RESUMO

The first Workshop on Drug Delivery in Paediatric Brain Tumours was hosted in London by the charity Children with Cancer UK. The goals of the workshop were to break down the barriers to treating central nervous system (CNS) tumours in children, leading to new collaborations and further innovations in this under-represented and emotive field. These barriers include the physical delivery challenges presented by the blood-brain barrier, the underpinning reasons for the intractability of CNS cancers, and the practical difficulties of delivering cancer treatment to the brains of children. Novel techniques for overcoming these problems were discussed, new models brought forth, and experiences compared.

19.
Oncotarget ; 7(19): 28169-82, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27058758

RESUMO

DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.


Assuntos
Neoplasias Cerebelares/genética , RNA Helicases DEAD-box/genética , Meduloblastoma/genética , Biossíntese de Proteínas/genética , Estresse Fisiológico/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Transcriptoma
20.
Cancer Cell ; 29(3): 311-323, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26977882

RESUMO

Medulloblastoma (MB) is a highly malignant pediatric brain tumor. Despite aggressive therapy, many patients succumb to the disease, and survivors experience severe side effects from treatment. MYC-driven MB has a particularly poor prognosis and would greatly benefit from more effective therapies. We used an animal model of MYC-driven MB to screen for drugs that decrease viability of tumor cells. Among the most effective compounds were histone deacetylase inhibitors (HDACIs). HDACIs potently inhibit survival of MYC-driven MB cells in vitro, in part by inducing expression of the FOXO1 tumor suppressor gene. HDACIs also synergize with phosphatidylinositol 3-kinase inhibitors to inhibit tumor growth in vivo. These studies identify an effective combination therapy for the most aggressive form of MB.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA